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Program equivalence checking is the task of confirming that two programs have the same behavior on
corresponding inputs. We develop a calculus based on symbolic execution and coinduction to check the
equivalence of programs in a non-strict functional language. Additionally, we show that our calculus can
be used to derive counterexamples for pairs of inequivalent programs, including counterexamples that arise
from non-termination. We describe a fully automated approach for finding both equivalence proofs and
counterexamples. Our implementation, nebula, proves equivalences of programs written in Haskell. We
demonstrate nebula’s practical effectiveness at both proving equivalence and producing counterexamples
automatically by applying nebula to existing benchmark properties.
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1 INTRODUCTION
Equivalence checking is the task of verifying that two programs behave identically when given
identical inputs. Equivalence checking is useful for a number of tasks, such as ensuring compiler
optimizations’ correctness [Benton 2004; Peyton Jones et al. 2001; Peyton Jones 1996]. Optimizing
compilers aim to improve the performance of code with simplifying transformations. Critically,
these transformations must preserve the meaning of the code, or they could lead to incorrect
behavior that violates the language specification. Equivalence checking has other uses as well, such
as ensuring the correctness of refactored code [Schuts et al. 2016], program synthesis [Campbell
et al. 2021; Schkufza et al. 2013; Smith and Albarghouthi 2019], and automatic evaluation of students’
submissions for programming assignments [Milovancevic et al. 2021].
Non-strict languages allow for the use of conceptually infinite data strutures. Such structures

have a number of uses, from memoization [Elliot 2010] to trees representing all moves in an infinite
game. Many seemingly obvious equivalences do not hold when we allow infinite data structures.
Consider, for instance, subtraction for natural numbers:

Z - _ = Z

data Nat = S Nat | Z x - Z = x

(S x) - (S y) = x - y
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One might expect m - m to reduce to Z for any natural number m, but this equivalence does not
always hold. With non-strictness, one can define a conceptually infinite Nat as inf = S inf, and
the evaluation of inf - inf does not terminate.
We describe the first––to the best of our knowledge––automated equivalence checker for pro-

grams in a non-strict functional language. Existing approaches for fully automated equivalence
checking [Claessen et al. 2012; Dixon and Fleuriot 2003; Farina et al. 2019; Sonnex et al. 2012]
assume total and finite input values. In contrast, our approach checks that two programs display
the same behavior even when applied to inputs that include infinite or diverging sub-expressions.

Our equivalence checking approach is based on symbolic execution and the principle of coinduc-
tion. Symbolic execution is a method for exploring the execution paths of a program exhaustively.
Coinduction is a proof technique for deriving conclusions about infinite data structures from cyclic
patterns in their behavior. We define a notion of equivalence for a non-strict functional language
that incorporates non-total expressions and the possibility of expressions being equivalent by both
failing to terminate. We develop a calculus for coinduction and symbolic execution capable of prov-
ing equivalence of programs in the non-strict functional language. This calculus also incorporates
a sound approach for using auxiliary equivalence lemmas that allow a sub-expression 𝑒1 to be
rewritten as an equivalent expression 𝑒2. We show that, while such lemma applications are actually
unsound in general, they can be used soundly under certain conditions.
In addition to proving equivalence, our approach finds counterexamples that demonstrate the

inequivalence of two programs. Our approach can detect not only inequivalences that arise from two
programs terminating with different values, but also inequivalences that arise from one program
terminating and the other failing to terminate when given the same inputs.
We show that the combination of symbolic execution and coinduction-based tactics allows for

automated equivalence checking and inequivalence detection. Our algorithm switches between
symbolic execution and coinduction automatically to find proofs. Further, we describe an extension
of this algorithm that generates and proves helper lemmas automatically.

We implement our approach in nebula (Non-strict Equivalence By Using Lemmas and Approxi-
mation), a practical tool targeting Haskell code. nebula builds on the Haskell symbolic execution
engine G2 [Hallahan et al. 2019], and it uses coinduction for automated equivalence checking of
higher-order functional programs. Our evaluation demonstrates that nebula is capable of both
verifying true properties and finding counterexamples for false properties. In particular, we run
nebula on the Zeno test suite [Sonnex et al. 2012]. As this test suite was developed assuming
strict semantics, most of the properties do not hold with non-strict semantics. We verify 92% of
the properties that are still true in a non-strict context (i.e. 26% of the entire suite, where 28% of
the suite is still true), and we find counterexamples for every property that no longer holds (72%
of the suite.) Furthermore, we evaluate nebula’s ability to identify counterexamples involving
non-termination and find that our tool can generate such counterexamples for 73% of the applicable
benchmarks. We describe an approach for accommodating total and finite inputs in nebula and
evaluate nebula on altered versions of the Zeno properties that hold even under non-strictness.
In summary, our contributions are the following:

1. Equivalence Checking Calculus Section 3 provides an overview of our formalization of sym-
bolic execution. In Section 4, we develop a calculus combining symbolic execution and coinduction
to prove equivalence of non-strict functional programs, and prove the calculus sound.

2. Producing Counterexamples In Section 5, we extend the calculus to produce counterexamples,
including counterexamples that demonstrate inequivalence due to differences in termination.
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Checking Equivalence in a Non-strict Language 177:3

prop33_lhs a b = min a b === a -- full === definition not shown

prop33_rhs a b = a <= b (S x) === (S y) = x === y

min Z y = Z Z <= _ = True

min (S x) Z = Z _ <= Z = False

min (S x) (S y) = S (min x y) (S x) <= (S y) = x <= y

Fig. 1. Zeno Theorem 33

min a b === a a <= bP1

⊥ ⊥P2

Z === Z Z <= bP3

True TrueP4

a = ⊥

a = Z

min (S a') b === S a' S a' <= bP5

a = S a'

⊥ ⊥P6

Z === S a' S a' <= ZP7

False FalseP8

b = ⊥

b = Z

min (S a') (S b') === S a' S a' <= (S b')P9
S (min a' b') === S a' a' <= b'P10

min a' b' === a'S11

b = S b'

Fig. 2. Overview of how nebula proves prop33. Gray arrows denote symbolic execution, and blue arrows

denote coinduction.

3. Automation Techniques Section 6 introduces an algorithm that searches for both equivalence
proofs and counterexamples automatically, guided by symbolic execution and coinduction. Our
algorithm also discovers and proves helper lemmas automatically to aid in the verification process.
4. Implementation and Evaluation Finally, in Section 7, we discuss our implementation, nebula,
that checks equivalence of Haskell expressions. We demonstrate our technique’s effectiveness at
both proving equivalences and producing counterexamples on benchmarks adapted from existing
sources.

For reasons of space, proofs are deferred to the Appendix, available at https://johnckolesar.github.
io/files/checking-equivalence.pdf.

2 MOTIVATING EXAMPLES
We present three examples to show how nebula proves properties and finds counterexamples.

Example 2.1. Our first example is the property prop33 taken from the Zeno evaluation suite [Sonnex
et al. 2012], which is a Haskell translation of the IsaPlanner evaluation suite [Johansson et al. 2010].
The example is given in Figure 1. Consider the functions prop33_lhs and prop33_rhs: prop33_lhs
finds the minimum of two numbers a and b, and returns whether that minimum value is equal
to a, while prop33_rhs uses <= to check directly whether a is less than or equal to b. nebula can
prove the equivalence of prop33_lhs and prop33_rhs automatically. The equivalence means that
evaluating prop33_lhs and prop33_rhs on any inputs a and b, including inputs that are infinite or
non-total, will produce the same output.

Figure 2 depicts the proof structure that nebula uses to prove the equivalence of prop33_lhs and
prop33_rhs. To simplify the presentation, we first explain how the proof obligations are discharged,
and then we discuss how the proof is actually derived. In the proof tree, each step P𝑖 consists of
two expressions that need to be proven equivalent.
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We start with P1, representing the two initial expressions, min a b === a and a <= b. Note that a
and b are symbolic variables: it is known that they are of type Nat, but their exact values are unknown.
We use symbolic execution to evaluate these expressions. Evaluating === requires evaluating min a b

first, which, in turn, requires knowing the value of a. To address these requirements, we need to
consider all the values that a can take, so we split into multiple branches. On each branch, we
assign a different value to a. In P3 we concretize a to Z, in P5 we concretize a to S a', where a' is a
fresh symbolic variable, and in P2, we concretize a to ⊥, a special value representing the possibility
that a either produces an error or does not terminate when evaluated. Each branch symbolically
executes a <= b with its concretization of a. Step P2 leads to the expression ⊥ <= b evaluating to
⊥. We conclude trivially that the expressions in P2 are equivalent, due to their syntactic equality. In
the case of P3, we have the states Z === Z and Z <= b. Symbolic execution will reduce both states
to True, as shown in P4, allowing us again to conclude that the expressions are equivalent.
Step P5 is a more interesting case: we must show that min (S a') b === S a' is equivalent to

S a' <= b. We need to consider all the values that b can take, and so b is concretized to ⊥ in P6, to
Z in P7, and to S b' in P9. We focus on P9, as P6 and P7 proceed similarly to P2 and P3. Running
further evaluations on both expressions in P9 results in step P10. One final symbolic execution step
on the left-hand side reduces S (min a' b') === S a' to the expression in S11, min a' b' === a'.
Notice the similarity between the states we have derived (min a' b' === a' and a' <= b') and

the states from the start (min a b === a and a <= b.) Apart from the names of the symbolic variables,
the states are identical. This correspondence allows us to apply coinduction to discharge the states.
The original left-hand state aligns with the current left-hand state, and the original right-hand
state aligns with the current right-hand state. The variables a and b take the places of a' and b',
respectively. We have reached a cycle, and that cycle is evidence of the two sides’ equivalence in
the situation where a and b are both successors of other natural numbers. This concludes the proof,
since all the proof obligations have been discharged.
Proof Derivation To find this proof automatically, nebula switches between applying symbolic
execution to reduce expressions and looking for opportunities to apply coinduction. Symbolic
execution stops at termination points. In particular, every function application is a termination
point. We attempt to apply coinduction whenever symbolic execution reaches a termination point.
Of course, states need to be in a suitable form for coinduction to apply. In the proof above, the

right-hand side of P10, a' <= b', is in the correct form for coinduction with the initial state pair.
However, the left-hand side of P10 needs an additional reduction step for coinduction to apply.

Naturally, there is a question: how did nebula know to reduce the left side, but not the right side?
The answer is that nebula, in fact, continues to apply further symbolic execution to both sides. In
Figure 2 we presented only relevant steps in the proof, and we left out the further reductions of the
right-hand side for simplicity. nebula maintains a history of all states on both sides. When trying
to apply coinduction, it holds the current left state steady and searches through all corresponding
right states (and vice versa) in an effort to form a pair that will allow coinduction to succeed.

Example 2.2. Next, we consider the formula prop01 from the Zeno evaluation suite [Sonnex et al.
2012]. In Figure 3 we define prop01_lhs and prop01_rhs whose equivalence we want to check. The
take function takes a natural number n and a list as input and returns the first n elements of the
list. The drop function also takes a natural number n and a list as input, but it returns all of the
elements of the list except the first n. The ++ operator represents list concatenation.
For prop01 to be valid, the natural number n needs to be total. If it is not, nebula finds a

counterexample, with n as ⊥ and xs as Z:[]. The expression take ⊥ (Z:[]) simplifies to ⊥, and
the expression ⊥ ++ drop ⊥ (Z:[]) also simplifies to ⊥ because of its first argument. At the same
time, the right-hand side is Z:[], which is a fully-defined expression.
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prop01_lhs n xs = take n xs ++ drop n xs

prop01_rhs n xs = xs

take Z _ = []

data [a] = [] | a : [a] take _ [] = []

take (S x) (y:ys) = y : (take x ys)

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys drop Z xs = xs

(x:xs) ++ ys = x : (xs ++ ys) drop _ [] = []

drop (S x) (_:xs) = drop x xs

Fig. 3. Zeno Theorem 1

take n xs ++ drop n xs xsP1

take Z xs ++ drop Z xs xsP2
xs xsP3

n = Z

take (S n') xs

++ drop (S n') xs
xsP4

⊥ ⊥P5

take (S n') []

++ drop (S n') []
[]P6

[] []P7

n = S n'

xs = ⊥

xs = []

take (S n') (x:xs') ++ drop (S n') (x:xs') x:xs'P8

(x:take n' xs') ++ drop (S n') (x:xs') x:xs'P9

x:(take n' xs' ++ drop (S n') (x:xs')) x:xs'P10

xs = x:xs'

x xP11take n' xs' ++ drop (S n') (x:xs') xs'P12
drop (S n') (x:xs') drop n' xs'P13

drop n' xs' drop n' xs'P14
take n' xs' ++ drop n' xs' xs'P15

Fig. 4. Overview of how nebula proves prop01. Gray arrows denote symbolic execution, blue arrows denote

coinduction, and orange dashed arrows denote lemma generation or usage.

If the user already knows that certain inputs must be total, then our tool allows the user to mark
them as total. nebula takes these total inputs’ names as command line arguments.
We now discuss the proof steps that nebula uses to prove the validity of prop01 under the

assumption that n is total. The proof structure is given in Figure 4.
Steps P1–P9 are similar to those taken in the previous example, so we focus on P10. Both sides

of P10 are applications of the list constructor :, so they cannot undergo any more non-strict
evaluation. We check equivalence of the expressions in P10 by checking equivalence of both the
head and the tail. This results in two new steps: P11 checks that the list heads are equivalent (and
can be discharged trivially by syntactic equality), while P12 checks that the tails are equivalent.
Discharging P12 requires proving that take n' xs' ++ drop (S n') (x:xs') is equivalent to xs'.
It might look tempting to apply coinduction between P12 and P1. Unfortunately, this does not

work. In the call to take, n' and xs' in P12 take the place of n and xs from P1, but in the call to drop,
we have S n' and x:xs' in P12 in place of n and xs in P1. No consistent mapping can be formed
between the two state pairs, so we cannot apply coinduction to P12 and P1.

To circumvent the problem, we attempt to prove a lemma based on sub-expressions of P12 and
P1. Specifically, we automatically derive a potential lemma stating that drop (S n') (x:xs') is
equivalent to drop n' xs'. We form the expression drop n' xs' by taking the sub-expression in P1

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 177. Publication date: October 2022.



177:6 John C. Kolesar, Ruzica Piskac, and William T. Hallahan

𝑒 ::= Expressions
| 𝑥 variable
| 𝑠 symbolic variable
| 𝜆𝑥 . 𝑒 lambda
| 𝐷 data constructor
| 𝑒 𝑒 application
| case 𝑒 of {®𝑎} case
| ⊥𝐿 bottom

𝑎 ::= 𝐷 ®𝑥 → 𝑒 Alternatives

Fig. 5. The language considered by nebula

that should align with drop (S n') (x:xs') in P12 and then applying variable substitutions based
on the correspondence that holds for the rest of the expression (i.e. for the applications of take).
This potential lemma appears as P13 in the diagram.

Proving the lemma in P13 is straightforward. Using the lemma, nebula now rewrites the ex-
pression take n' xs' ++ drop (S n') (x:xs') as take n' xs' ++ drop n' xs', as shown in P15.
Finally, this proof obligation can be discharged by applying coinduction with P1.

Example 2.3. Our last example, also from the Zeno suite [Sonnex et al. 2012], illustrates how nebula
finds counterexamples. Consider Zeno theorem 10, which asserts the equivalence of m - m and Z.
This is true under strict semantics but not under non-strict semantics, even when m is total. When
run on m - m and Z, nebula finds a counterexample exposing this inequivalence. nebula starts
by applying symbolic execution to m - m. Applying symbolic execution to Z is not possible, as it
is already fully reduced. Evaluating m - m requires concretizing m. On the branch where m = S m',
nebula will reduce S m' - S m' to m' - m'.

So far, this reduction is similar to the process seen in previous examples, and one might expect
to apply coinduction between m - m and m' - m'. However, coinduction cannot be applied here
because the other expression, Z, is already fully reduced (the reason for this restriction on the use of
coinduction will be explained in Section 4.2.) On the contrary, we have found a cycle counterexample.
The new expression m' - m' is as general as the original expression m - m. This means that we
can follow the same reduction steps that m - m took to reduce to m' - m' over again. m' - m' can
reduce to m'' - m'', and the process could repeat forever, resulting in non-termination. On the
other hand, Z has already terminated. Mapping m' - m' to m - m requires replacing m' with m, and,
in the state m' - m', we have concretized m as S m'. Thus, we can conclude that letting m' = m in
m = S m' will lead to non-termination, and we obtain the input counterexample m = S m.

Note that the direction of the correspondence between the current and previous state to form a
cycle counterexample is the reverse of that for a proof by coinduction. For coinduction, we show
that the past state pair is at least as general as the current state pair, so that any reduction steps that
can be applied to the current state pair can also be applied to the past state pair. This means that, if
the past state pair cannot be reduced to inequivalent expressions, neither can the current state pair.
In contrast, for a cycle counterexample, we show that the current state is at least as general as the
past state, so that the current state can continue reduction in the same way as the past state.

3 SYMBOLIC EXECUTION
Symbolic execution is a program analysis technique that runs code with symbolic variables in
place of concrete values. Here we describe symbolic execution for a non-strict functional language,
which will both allow us to search for counterexamples to proposed equivalences and act as
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a guide for proof techniques such as coinduction. While symbolic execution as presented here
resembles [Hallahan et al. 2019], the formalization has been adapted to account for non-total values.
The structure of states and the reduction rules over states have also been simplified.
Syntax Figure 5 shows the core language 𝜆𝑆 used by nebula. nebula operates over a non-strict
typed functional language, consisting of standard elements such as variables, lambdas, algebraic
datatypes, and case statements. 𝑒 : 𝜏 denotes that the expression 𝑒 has type 𝜏 . Symbolic variables 𝑠
are used in 𝜆𝑆 to denote unknown values.

An algebraic datatype is a finite set of constructors with arguments,𝐷1𝜏
1
1 . . . 𝜏

𝑛1
1 , . . . , 𝐷𝑘 𝜏

1
𝑘
. . . 𝜏

𝑛𝑘
𝑘
.

A bottom value, denoted ⊥𝐿 , is an error. The superscript 𝐿 is a label. When we define equivalence
in Section 4, two bottoms will be treated as equivalent if and only if they have the same label.
NotationWe define = to check syntactic equality of expressions. 𝑒′ ∈ 𝑒 holds if 𝑒′ is a sub-expression
of 𝑒 . The expression 𝑒 [𝑒2 / 𝑒1] denotes 𝑒 with each occurence of the sub-expression 𝑒1 replaced by
𝑒2. If we have a mapping 𝑉 from symbolic variables to expressions, we write 𝑒 [𝑉 (𝑠) / 𝑠] to denote
𝑒 with all occurrences of 𝑠 replaced with the expression 𝑉 (𝑠) for each 𝑠 in 𝑉 .
Symbolic Weak Head Normal Form Non-strict semantics reduces expressions to Weak Head
Normal Form (WHNF) [Peyton Jones 1996], i.e. a lambda expression or data constructor application.
Correspondingly, symbolic execution reduces expressions to Symbolic Weak Head Normal Form

(SWHNF). SWHNF is defined as follows:

SWHNF(𝑒) =



True 𝑒 ≡ 𝑠
True 𝑒 ≡ 𝐷 ®𝑒
True 𝑒 ≡ 𝜆𝑥 . 𝑒

True 𝑒 ≡ ⊥𝐿

False otherwise

Symbolic variables and bottoms are in SWHNF because they function as stopping points for
symbolic execution, just as lambda expressions and data constructor applications do.
States Symbolic execution operates on states of the form (𝑒, 𝑌 ). 𝑒 is the expression being evaluated.
The symbolic store 𝑌 is used to record values assigned to symbolic variables. Symbolic variables
map to data constructors that are fully applied to symbolic variables. We refer to the mappings as
concretizations. We write 𝑠 ∈ 𝑌 if 𝑌 has a mapping for 𝑠 . We overload ∈, so that (𝑠, 𝑒) ∈ 𝑌 denotes
that 𝑠 is mapped to 𝑒 in 𝑌 . lookup(𝑠, 𝑌 ) denotes the data constructor application that 𝑌 contains
for 𝑠 . 𝑌 {𝑠 → 𝐷 ®𝑠} denotes the symbolic store 𝑌 with 𝑠 mapped to 𝐷 ®𝑠 .
Reduction We formalize evaluation in terms of small-step reduction rules. We write 𝑆 ↩→ 𝑆 ′ to
indicate that 𝑆 can take a single step to the state 𝑆 ′. We write 𝑆 ↩→∗ 𝑆 ′ to indicate that 𝑆 can
be reduced to the state 𝑆 ′ by zero or more applications of ↩→. Because expressions can contain
symbolic values, it is sometimes possible to apply more than one reduction rule to a state or to apply
the same rule in multiple different ways. Whenever this situation arises in symbolic execution, the
state is duplicated, and each possible rule is applied to a distinct copy of the state. This enables the
execution to explore all possible paths through a program.
Figure 6 shows the reduction rules. The rules for lambda expressions and applications are

standard. Var looks up expressions (such as the definitions of min or <= in Example 2.1) in an implicit
environment. Note that these expressions may be recursive. A case expression case𝑒 of{®𝑎} branches
depending on the value of 𝑒 , which we call the scrutinee. The CsEv rule for case statements reduces
the scrutinee of the case statement to SWHNF, so that CsDC can be used to select the appropriate
branch. If the scrutinee of the case statement evaluates to a symbolic variable 𝑠 , the applicable rule
depends on whether the symbolic variable is already in the state’s symbolic store 𝑌 . If 𝑠 ∈ 𝑌 , the
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Var
(𝑥, 𝑌 ) ↩→

(lookup(𝑥), 𝑌 )

App

¬SWHNF(𝑓 )
(𝑓 , 𝑌 ) ↩→ (𝑓 ′, 𝑌 ′)
(𝑓 𝑒, 𝑌 ) ↩→
(𝑓 ′ 𝑒, 𝑌 ′)

App𝜆
((𝜆𝑥 . 𝑒′) 𝑒, 𝑌 ) ↩→
(𝑒′ [𝑒 / 𝑥], 𝑌 )

CsEv
(𝑒, 𝑌 ) ↩→ (𝑒′, 𝑌 ′)
(case 𝑒 of {®𝑎}, 𝑌 ) ↩→
(case 𝑒′ of {®𝑎}, 𝑌 ′)

CsDC
(case 𝐷 ®𝑒 of {𝐷 ®𝑥 → 𝑒𝑎 ; . . .}, 𝑌 ) ↩→

(𝑒𝑎 [®𝑒 / ®𝑥], 𝑌 )

FrDC
𝑠 ∉ 𝑌 ®𝑠 fresh

(case 𝑠 of {𝐷 ®𝑥 → 𝑒𝑎 ; . . .}, 𝑌 ) ↩→
(𝑒𝑎 [®𝑠 / ®𝑥], 𝑌 {𝑠 → 𝐷 ®𝑠})

LkDC
𝑠 ∈ 𝑌 𝐷 ®𝑠 = lookup(𝑠, 𝑌 )

(case 𝑠 of {𝐷 ®𝑥 → 𝑒𝑎 ; . . .}, 𝑌 ) ↩→
(𝑒𝑎 [®𝑠 / ®𝑥], 𝑌 )

BtDC 𝐿 fresh

(case 𝑠 of {𝐷 ®𝑥 → 𝑒𝑎 ; . . .}, 𝑌 )
↩→ (⊥𝐿, 𝑌 {𝑠 → ⊥𝐿})

BtApp
(⊥𝐿 𝑒, 𝑌 )
↩→ (⊥𝐿, 𝑌 )

BtCs
(case ⊥𝐿 of {®𝑎}, 𝑌 )

↩→ (⊥𝐿, 𝑌 )

Fig. 6. Reduction Rules

rule LkDC selects the appropriate case statement branch to continue evaluation. If 𝑠 ∉ 𝑌 , then FrDC
splits the state to explore each possible branch, and it records the choice made along each branch
in 𝑌 so that LkDC can be applied the next time each state branches on 𝑠 .

BtApp and BtCs force any expression which must evaluate ⊥𝐿 to reduce to ⊥𝐿 itself. BtDC
concretizes a symbolic variable to ⊥𝐿 with a fresh label 𝐿. The inclusion of BtDC requires any
proofs relying on our symbolic execution engine to consider the possibility of a partial input for any
of a program’s arguments. Labels can be used to distinguish between errors from distinct sources.
Our reduction rules, as we present them here, assume that all symbolic values are first-order.

Nevertheless, our system is capable of proving properties that involve symbolic functions. We
describe our method of handling symbolic functions in Section 6.
Approximation We define an approximation relation ⊑𝑉 on states. Intuitively, 𝑆 ⊑𝑉 𝑆 ′ (“𝑆 is
approximated by 𝑆 ′” or “𝑆 ′ approximates 𝑆”) if 𝑆 is a more concrete version of 𝑆 ′––that is, if 𝑆
replaces all the symbolic variables in 𝑆 ′ with other expressions in a consistent way and is the same
as 𝑆 ′ otherwise.

We formalize ⊑𝑉 in Figure 7. 𝑆 ⊑𝑉 𝑆 ′ holds if there is any inference tree with 𝑆 ⊑𝑉 𝑆 ′ as the root.
The subscript 𝑉 is a mapping 𝑉 = {. . . (𝑠, 𝑒), . . .} from symbolic variables in 𝑆 ′ to expressions in
𝑆 . We define lookup(𝑠,𝑉 ) to refer to the expression 𝑒 such that (𝑠, 𝑒) ∈ 𝑉 . We overload ∈, so that
𝑠 ∈ 𝑉 holds if there is some mapping for 𝑠 in 𝑉 . We use 𝑆 ⊑ 𝑆 ′ as shorthand for ∃𝑉 .𝑆 ⊑𝑉 𝑆 ′.

It should be noted that checking whether one state approximates another is undecidable in
general, as it requires checking if a state’s execution (alternatively, a program’s execution) will
reach a particular point eventually. However, our formalization of ⊑ carefully ensures that symbolic
execution explores all paths through a program, and thus can be used to verify properties of
programs. We state this formally as Theorem 3.1:

Theorem 3.1 (Symbolic Execution Completeness). Let 𝑆1 and 𝑆2 be states such that 𝑆1 ⊑ 𝑆2. If

𝑆1 ↩→ 𝑆 ′1, then either 𝑆 ′1 ⊑ 𝑆2, or there exists 𝑆
′
2 such that 𝑆2 ↩→ 𝑆 ′2, and 𝑆

′
1 ⊑ 𝑆 ′2.

Most of the rules of ⊑ simply walk over the two states’ expressions recursively. The most
interesting piece of the definition of ⊑𝑉 is the handling of symbolic variables on the right-hand

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 177. Publication date: October 2022.



Checking Equivalence in a Non-strict Language 177:9

⊑-Eval
∃𝑒′ .(𝑒1, 𝑌1) ↩→∗ (𝑒′, 𝑌1) ∧ (𝑒′, 𝑌1) ⊑𝑉 (𝑒2, 𝑌2)

(𝑒1, 𝑌1) ⊑𝑉 (𝑒2, 𝑌2)

⊑-Sym1

∃𝑒′ = lookup(𝑠,𝑉 ), 𝑒′′ .(𝑒′, 𝑌1) ↩→∗ (𝑒′′, 𝑌1) ∧ (𝑒1, 𝑌1) ⊑𝑉 (𝑒′′, 𝑌2)
∃𝑒 = lookup(𝑠, 𝑌2) (𝑒1, 𝑌1) ⊑𝑉 (𝑒, 𝑌2)

(𝑒1, 𝑌1) ⊑𝑉 (𝑠, 𝑌2)

⊑-Sym2
𝑠 ∉ 𝑌2 ∃𝑒 = lookup(𝑠,𝑉 ), 𝑒′ .(𝑒, 𝑌1) ↩→∗ (𝑒′, 𝑌1) ∧ (𝑒1, 𝑌1) ⊑𝑉 (𝑒′, 𝑌2)

(𝑒1, 𝑌1) ⊑𝑉 (𝑠, 𝑌2)

⊑-Var
(𝑥, 𝑌1) ⊑𝑉 (𝑥, 𝑌2)

⊑-Lam
(𝑒1 [𝑥/𝑥1], 𝑌1) ⊑𝑉 (𝑒2 [𝑥/𝑥2], 𝑌2) 𝑥 fresh

(𝜆𝑥1 . 𝑒1, 𝑌1) ⊑𝑉 (𝜆𝑥2 . 𝑒2, 𝑌2)

⊑-Case

(𝑒1, 𝑌1) ⊑𝑉 (𝑒2, 𝑌2)
∀(𝐷 ®𝑥1 → 𝑒𝑎1 ) ∈ 𝑎1.∃(𝐷 ®𝑥2 → 𝑒𝑎2 ) ∈ 𝑎2, ®𝑥 fresh.(𝑒𝑎1 [®𝑥/ ®𝑥1], 𝑌1) ⊑𝑉 (𝑒𝑎2 [®𝑥/®𝑥2], 𝑌2)

(case 𝑒1 of { ®𝑎1}, 𝑌1) ⊑𝑉 (case 𝑒2 of { ®𝑎2}, 𝑌2)

⊑-DC
(𝐷, 𝑌1) ⊑𝑉 (𝐷, 𝑌2)

⊑-App

(𝑒1, 𝑌1) ⊑𝑉 (𝑒′1, 𝑌2)
(𝑒2, 𝑌1) ⊑𝑉 (𝑒′2, 𝑌2)
(𝑒1 𝑒2, 𝑌1) ⊑𝑉 (𝑒′1 𝑒′2, 𝑌2)

⊑-Bt
(⊥𝐿, 𝑌1) ⊑𝑉 (⊥𝐿, 𝑌2)

Fig. 7. Approximation Definition

side of the relation. The rule ⊑-Sym2 allows us to establish that (𝑒1, 𝑌1) ⊑𝑉 (𝑠, 𝑌2) when 𝑠 ∉ 𝑌2,
by fetching 𝑒 = lookup(𝑠,𝑉 ) and checking if there is some 𝑒′ such that (𝑒, 𝑌1) ↩→∗ (𝑒′, 𝑌1) and
(𝑒1, 𝑌1) ⊑𝑉 (𝑒′, 𝑌2). ⊑-Sym1 is similar to ⊑-Sym2, but it applies to the case where there is some
𝑒 = lookup(𝑠,𝑉 ), and thus requires additionally that 𝑒1 ⊑ 𝑒 . The final rule of interest is ⊑-Eval,
which states that (𝑒1, 𝑌1) ⊑𝑉 (𝑒2, 𝑌2) if there is some 𝑒′ such that (𝑒1, 𝑌1) ↩→∗ (𝑒′, 𝑌1) and
(𝑒′, 𝑌1) ⊑𝑉 (𝑒2, 𝑌2). In other words, an arbitrary number of deterministic reduction rules can be
applied to the left-hand expression of ⊑𝑉 .
Allowing arbitrary evaluation at various points is essential to ensure that Theorem 3.1 holds.

The following example illustrates this:

Example 3.1. Consider the approximation

(case 𝑖𝑑 𝐷 of {𝐷 → 𝑓 (𝑖𝑑 𝐷)}, {}) ⊑{𝑠→𝑖𝑑 𝐷 } (case 𝑠 of {𝐷 → 𝑓 𝑠}, {})

where 𝑖𝑑 is the identity function, 𝜆𝑥 . 𝑥 , and 𝑓 is an arbitrary function. After a single reduction
step, the left-hand side of the expression will have inlined the definition of 𝑖𝑑 , reducing to this:

(case (𝜆𝑥 . 𝑥) 𝐷 of {𝐷 → 𝑓 (𝑖𝑑 𝐷)}, {}).

If ⊑ required that a symbolic variable on the right map precisely to the expression on the left, then

(case (𝜆𝑥 . 𝑥) 𝐷 of {𝐷 → 𝑓 (𝑖𝑑 𝐷)}, {}) ⊑𝑉 (case 𝑠 of {𝐷 → 𝑓 𝑠}, {})

would not hold for any 𝑉 . ⊑-Sym2 allows leaving 𝑉 = {𝑠 → 𝑖𝑑 𝐷}, to preserve the approximation.

In Section 6, we will formalize a simpler computable relation ⊆ that implies approximation. In
our implementation of nebula, we use ⊆ rather than ⊑ to satisfy the premises of our proof rules.
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Syn-Eq-Eqiv
𝑒1 = 𝑒2

𝑅, 𝑌, 𝑒1 ≡ 𝑒2
DC-Eqiv

∀𝑘𝑖=1𝑅, 𝑌, 𝑒1𝑖 ≡ 𝑒2𝑖

𝑅, 𝑌, 𝐷 𝑒11 . . . 𝑒
1
𝑘
≡ 𝐷 𝑒21 . . . 𝑒

2
𝑘

Lam-Eqiv

𝑠 fresh
𝑅, 𝑌, (𝜆𝑥1 . 𝑒1) 𝑠 ≡ (𝜆𝑥2 . 𝑒2) 𝑠

𝑅, 𝑌 , 𝜆𝑥1 . 𝑒1 ≡ 𝜆𝑥2 . 𝑒2
Bot-Eqiv

𝑅, 𝑌,⊥𝐿 ≡ ⊥𝐿

Fig. 8. Syntactic equivalence and equivalence based on splitting SWHNF expressions

4 EQUIVALENCE
Consider two expressions 𝑒1 and 𝑒2 that share a set of free (symbolic) variables {𝑠1 . . . 𝑠𝑘 }. We wish
to define equivalence ≡ for non-strictly computed values. Intuitively, equivalence for non-strictly
computed values means that the two expressions both evaluate to the same value or both fail to
terminate. We will formalize this with some mutually recursive definitions. First, we define ≡𝑊𝐻𝑁𝐹 ,
which checks equivalence only on WHNF expressions and labeled bottoms (and treats bottoms
with different labels as inequivalent):

(𝑒1 ≡𝑊𝐻𝑁𝐹 𝑒2) =


∀𝑘𝑖=1.𝑒1𝑖 ≡ 𝑒2𝑖 𝑒1 = (𝐷1 𝑒

1
1 . . . 𝑒

1
𝑘
) ∧ 𝑒2 = (𝐷1 𝑒

2
1 . . . 𝑒

2
𝑘
)

∀𝑒.𝑒′1 [𝑒 / 𝑠1] ≡ 𝑒′2 [𝑒 / 𝑠2] 𝑒1 = 𝜆𝑠1 . 𝑒
′
1 ∧ 𝑒2 = 𝜆𝑠2 . 𝑒

′
2

𝐿1 = 𝐿2 𝑒1 = ⊥𝐿1 ∧ 𝑒2 = ⊥𝐿2
False otherwise

Next, we say that a group of concretizations 𝑒𝑎1 , . . . 𝑒
𝑎
𝑘
for variables {𝑠1 . . . 𝑠𝑘 } satisfies 𝑌 if there

exists some mapping 𝑉 such that, for every 1 ≤ 𝑖 ≤ 𝑘 , either 𝑠𝑖 is unmapped in 𝑌 or (𝑒𝑎𝑖 , 𝑌 ) ⊑𝑉
(𝑒𝑖 , 𝑌 ), where 𝑒𝑖 = lookup(𝑠𝑖 , 𝑌 ). Now we can define general equivalence. We say that 𝑒1 and 𝑒2
are equivalent with respect to some symbolic store 𝑌 and write 𝑒1 ≡𝑌,𝑃 𝑒2 if, for all concrete
assignments 𝑒𝑎1 , . . . 𝑒

𝑎
𝑘
to {𝑠1 . . . 𝑠𝑘 } that satisfy 𝑌 , both expressions either (1) evaluate to the same

WHNF expression, with corresponding internal values or thunks also equivalent:

∃𝑒′1, 𝑒′2.𝑒1 [𝑒𝑎1 / 𝑠1 . . . 𝑒𝑎𝑘 / 𝑠𝑘 ] ↩→
∗ 𝑒′1 ∧ 𝑒2 [𝑒𝑎1 / 𝑠1 . . . 𝑒𝑎𝑘 / 𝑠𝑘 ] ↩→

∗ 𝑒′2 ∧ 𝑒′1 ≡𝑊𝐻𝑁𝐹 𝑒′2

or (2) do not terminate:

∀𝑒′1, 𝑒′2.(𝑒1 [𝑒𝑎1 / 𝑠1 . . . 𝑒𝑎𝑘 / 𝑠𝑘 ] ↩→
∗ 𝑒′1 ∧ 𝑒2 [𝑒𝑎1 / 𝑠1 . . . 𝑒𝑎𝑘 / 𝑠𝑘 ] ↩→

∗ 𝑒′2)
=⇒ (¬SWHNF(𝑒′1) ∧ ¬SWHNF(𝑒′2))

We treat bottom values with different labels as distinct because programmers might not want
to treat errors with different sources as interchangeable. Recall that, when a symbolic variable is
concretized as a bottom value, it receives a fresh label to distinguish it from other bottom values.
This also means we do not need to distinguish between a symbolic variable’s evaluation terminating
with an error or failing to terminate: the labeled bottom can represent either behavior since it is
distinct from non-terminating expressions and from other bottom values.

4.1 Equivalence Rules
We define a relation on states 𝑆 ≡ 𝑆 ′ that is true if and only if corresponding inputs to 𝑆 and 𝑆 ′
produce syntactically equivalent outputs. Here, we formalize proof rules that allow nebula to show
that 𝑆 ≡ 𝑆 ′ holds. In Section 6, we will discuss the actual implementation of these rules in nebula.
Syntactic and SWHNF Equivalence The rules in Figure 8 allow us to prove the equivalence of
two expressions. The rule Syn-Eq-Eqiv allows us to discharge two expressions as equivalent if
they are syntactically equal. The other three rules concern expressions in SWHNF. Given two
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Red-L

∀(𝑒′1, 𝑌 ′)𝑠 .𝑡 .(𝑒1, 𝑌 ) ↩→ (𝑒′1, 𝑌 ′).
𝑅, 𝑌 ′, 𝑒′1 ≡ 𝑒2

𝑅, 𝑌, 𝑒1 ≡ 𝑒2
Red-R

∀(𝑒′2, 𝑌 ′)𝑠 .𝑡 .(𝑒2, 𝑌 ) ↩→ (𝑒′2, 𝑌 ′).
𝑅, 𝑌 ′, 𝑒1 ≡ 𝑒′2
𝑅, 𝑌, 𝑒1 ≡ 𝑒2

Fig. 9. Reduction Rules

RAdd
𝑅 ∪ (𝑒1, 𝑒2, 𝑌 ), 𝑌 , 𝑒1 ≡ 𝑒2

𝑅, 𝑌, 𝑒1 ≡ 𝑒2
U-Coind

(𝑒𝑅1 , 𝑒𝑅2 , 𝑌𝑅) ∈ 𝑅 ¬SWHNF(𝑒𝑅1 ) ¬SWHNF(𝑒𝑅2 )
∃𝑉 .(𝑒1, 𝑌 ) ⊑𝑉 (𝑒𝑅1 , 𝑌𝑅) ∧ (𝑒2, 𝑌 ) ⊑𝑉 (𝑒𝑅2 , 𝑌𝑅)

𝑅, 𝑌, 𝑒1 ≡ 𝑒2

G-Coind
∃(𝑒𝑅1 , 𝑒𝑅2 , 𝑌𝑅) ∈ 𝑅,𝑉 . (𝑒1, 𝑌 ) ⊑𝑉 (𝑒𝑅1 , 𝑌𝑅) ∧ (𝑒2, 𝑌 ) ⊑𝑉 (𝑒𝑅2 , 𝑌𝑅)

𝑅, 𝑌, 𝑒1 ≡ 𝑒2

Fig. 10. Unguarded and Guarded Coinduction

expressions that are applications of the same data constructor, 𝑒1 = 𝐷 𝑒11 . . . 𝑒
1
𝑘
and 𝑒2 = 𝐷 𝑒21 . . . 𝑒

2
𝑘
,

the rule DC-Eqiv reduces checking the equivalence of 𝑒1 and 𝑒2 to checking the equivalence of
each matching argument pair (𝑒1𝑖 , 𝑒2𝑖 ). Lam-Eqiv states that two lambda expressions are equivalent
if their applications to a fresh symbolic value are equivalent. Bot-Eqiv says two bottoms are
equivalent if they share a label. These rules follow easily from the definition of equivalence.
Reduction Rules Figure 9 shows the rules Red-L and Red-R, which apply symbolic execution to
the left and right state, respectively, being checked by the relation. The correctness of these rules is
justified by Theorem 3.1, which establishes the completeness of symbolic execution.
When used alongside the SWHNF equivalence rules, Red-L and Red-R are sufficient to check

equivalence up to some input depth, on programs that terminate for all finite inputs. In the next
section, we will see how coinduction can be used to extend this result to arbitrarily large inputs
and programs which do not necessarily terminate, allowing full verification of equivalence.

4.2 Equivalence Verification with Coinduction
The basis of nebula’s approach to verification is coinduction. Coinduction is a proof technique
that applies to infinite data structures, just as induction applies to finite data structures. Whereas
induction might be seen as constructing a complex object from a base case and inductive steps,
coinduction works in the opposite direction. Coinduction relies on a proof that an object upholds
a property and then deconstructs the object to show that each of its parts satisfies the same
property [Gordon 1995; Kozen and Silva 2017]. Coinduction uses a bisimulation to prove two
states’ equivalence. A bisimulation is a relation between states, in which two states are related
only if they are still related after being reduced. We formalize our use of coinduction as the rules
RAdd, U-Coind, and G-Coind in Figure 10. In our calculus, we build a bisimulation 𝑅 as a set of
state pairs (𝑆1, 𝑆2). 𝑅 relates 𝑆1 and 𝑆2 if either (1) evaluating 𝑆1 and 𝑆2 results in a cycle where
the two states are approximated (as defined in Section 3) by other states in 𝑅 or (2) 𝑆1 and 𝑆2
are equivalent when reduced to SWHNF. In the case that both states reach SWHNF expressions
with sub-expressions, equivalence of the sub-expressions can be established either by coinduction
(relating the sub-expressions with 𝑅) or by some other technique such as syntactic equality.

As previously stated, Figure 10 shows the coinduction rules RAdd, U-Coind, and G-Coind that
nebula uses to prove state pairs’ equivalence. RAdd attempts to build a bisimulation by adding
an expression pair (𝑒𝑅1 , 𝑒𝑅2 ) and a corresponding symbolic store 𝑌𝑅 to 𝑅. U-Coind allows nebula

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 177. Publication date: October 2022.



177:12 John C. Kolesar, Ruzica Piskac, and William T. Hallahan

LemmaLeft

{}, 𝑌𝐿, 𝑒𝐿1 ≡ 𝑒𝐿2 𝑒1 = 𝑓 𝑒𝑎1 . . . 𝑒𝑎
𝑘
∃𝑒′1 ∈ 𝑒1.(𝑒′1, 𝑌 ) ⊑𝑉 (𝑒𝐿1 , 𝑌𝐿)

𝑒𝑉2 = 𝑒𝐿2 [𝑉 (𝑠) / 𝑠] ¬calls(𝑒𝑉2 , 𝑓 ) 𝑅, 𝑌, 𝑒1 [𝑒𝑉2 / 𝑒′1] ≡ 𝑒2

𝑅, 𝑌, 𝑒1 ≡ 𝑒2

LemmaRight

{}, 𝑌 , 𝑒1 ≡ 𝑒2 𝑒2 = 𝑓 𝑒𝑎1 . . . 𝑒𝑎
𝑘
∃𝑒′2 ∈ 𝑒2 .(𝑒′2, 𝑌 ) ⊑𝑉 (𝑒𝐿2 , 𝑌𝐿)

𝑒𝑉1 = 𝑒𝐿1 [𝑉 (𝑠) / 𝑠] ¬calls(𝑒𝑉1 , 𝑓 ) 𝑅, 𝑌, 𝑒1 ≡ 𝑒2 [𝑒𝑉1 / 𝑒′2]
𝑅, 𝑌, 𝑒1 ≡ 𝑒2

LemmaOver
{}, 𝑌𝐿, 𝑒𝐿1 ≡ 𝑒𝐿2 (𝑒1, 𝑌 ) ⊑𝑉 (𝑒𝐿1 , 𝑌𝐿) (𝑒2, 𝑌 ) ⊑𝑉 (𝑒𝐿2 , 𝑌𝐿)

𝑅, 𝑌, 𝑒1 ≡ 𝑒2

Fig. 11. Proof Rules for Lemmas

to discharge a pair of expressions (𝑒1, 𝑒2) and a corresponding symbolic store 𝑌 if ¬SWHNF(𝑒𝑅1 ),
¬SWHNF(𝑒𝑅2 ), and there is a mapping 𝑉 such that (𝑒1, 𝑌 ) ⊑𝑉 (𝑒𝑅1 , 𝑌𝑅) and (𝑒2, 𝑌 ) ⊑𝑉 (𝑒𝑅2 , 𝑌𝑅).
G-Coind allows nebula to discharge a pair of expressions (𝑒1, 𝑒2) and a corresponding symbolic
store 𝑌 if there is a mapping 𝑉 such that (𝑒1, 𝑌 ) ⊑𝑉 (𝑒𝑅1 , 𝑌𝑅) and (𝑒2, 𝑌 ) ⊑𝑉 (𝑒𝑅2 , 𝑌𝑅).
At a high level, U-Coind and G-Coind are both sound because of Theorem 3.1. If there is a path

that could lead to a counterexample between (𝑒1, 𝑌 ) and (𝑒2, 𝑌 ), then there must also be a path
that leads to a counterexample between (𝑒𝑅1 , 𝑌𝑅) and (𝑒𝑅2 , 𝑌𝑅).

To uphold soundness, we enforce productivity properties for our proof trees when applications
of RAdd, U-Coind, and G-Coind occur. The productivity properties involve the rules from Figures 8
and 9:

Definition 4.1 (U-Productivity). A proof tree is U-productive if both an application of Red-L and
an application of Red-R occur between every use of RAdd and every corresponding use of U-Coind.

Definition 4.2 (G-productivity). A proof tree is G-productive if an application of DC-Eqiv or
Lam-Eqiv occurs between every use of RAdd and every corresponding use of G-Coind.

A proof tree must be both U-productive and G-productive in order to be valid. Enforcing U-
productivity prevents us from making circular proofs that add states to 𝑅 and then immediately use
the added states to discharge the branch. G-productivity prevents circular proofs in the same way
that U-productivity does, but it allows us to use states that are in SWHNF during coinduction. This
is important if a state enters SWHNF immediately after an application of DC-Eqiv or Lam-Eqiv.
Soundness We define the soundness of an equivalence checker as follows:

Definition 4.3 (Soundness). A set of proof rules is sound if a productive proof tree using those
rules, and with the conclusion {}, 𝑌 , 𝑒1 ≡ 𝑒2, can be constructed only if 𝑒1 and 𝑒2 are equivalent.

We formally state the soundness of the coinduction rules, in combination with the rules from
the prior sections, as the following theorem:

Theorem 4.4 (Soundness of Coinduction Rules). The syntactic equality rule (Syn-Eq-Equiv),

the SWHNF equivalence rules (DC-Equiv and Lam-Equiv), the reduction rules (Red-L and Red-R), and

the coinduction rules (RAdd, U-Coind, and G-Coind) are sound when used in a productive proof tree.

4.3 Lemmas
As we mentioned in Example 2.2, direct applications of coinduction are not always possible.
Sometimes we need lemmas––extra state pairs that we have proven equivalent––in order to guide
an expression into a form more amenable to ⊑ and coinduction.
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In Figure 11 we introduce three rules, LemmaLeft, LemmaRight, and LemmaOver, that allow us to
apply lemmas soundly alongside coinduction.
LemmaLeft and LemmaRight The rule LemmaLeft substitutes one expression for another on the
left-hand side of a state pair and uses a lemma to justify the substitution. The first step in applying
the rule is proving some lemma 𝑆𝐿1 ≡ 𝑆𝐿2 . The next step is to check if there is some 𝑒′1 ∈ 𝑒1 such
that (𝑒′1, 𝑌1) ⊑𝑉 𝑆𝐿1 . If there is, we can substitute the mapping𝑉 into 𝑒𝐿2 , forming 𝑒𝑉2 = 𝑒𝐿2 [𝑉 (𝑠) / 𝑠].
Then we simply need to prove the equivalence 𝑅, 𝑌, 𝑒1 [𝑒𝑉2 / 𝑒′1] ≡ 𝑒2.

For soundness, LemmaLeft requires that two other lemma productivity properties hold. First, we
require that the expression 𝑒1 be in function application form: simply put, 𝑒1 must be a function
application 𝑓 𝑒𝑎1 . . . 𝑒

𝑎
𝑘
. Second, we require that 𝑓 , the function being applied, is not syntactically

included in 𝑒𝑉2 or syntactically included in any functions invoked by 𝑒𝑉2 , either directly or indirectly.
The two lemma productivity properties prevent us from using lemmas to prove that terminating

expressions are equivalent to non-terminating expressions. The need for the two properties arises
from the fact that the correctness of coinduction relies in part on the directionality of reduction
↩→. Recall that coinduction relies on detecting cycles in the execution of a program. If we allowed
lemma application without the lemma productivity properties, lemmas could be used to reverse
reduction steps, without completing a cycle, thus allowing for unsound applications of coinduction.

Why do these two requirements prevent this unsoundness? In short, in a finite reduction sequence,
a given function 𝑓 may be called only finitely many times. The equivalence guaranteed by the
lemma (𝑒1, 𝑌 ) ≡ (𝑒2, 𝑌 ) and the second productivity requirement ensure that, even after lemma
substitution, the number of calls to 𝑓 required for an equivalent (modulo any differences between
the reduction of 𝑒1 and 𝑒2) reduction sequence will not be increased by a lemma application. By
induction on the number of applications of 𝑓 , we can then show that, if there exists a reduction
path that would demonstrate an inequivalence between the two expressions without the lemma
being applied, we will still discover it even after applying the lemma.

LemmaRight resembles LemmaLeft but substitutes on the right-hand side of the state pair.
LemmaOver The rule LemmaOver uses a lemma to discharge an equivalence immediately rather
than modifying the states for the equivalence. More specifically, LemmaOver derives the conclusion
that (𝑅, 𝑌, 𝑒1 ≡ 𝑒2) from the existence of some 𝑒𝐿1 , 𝑒

𝐿
2 , and𝑌

𝐿 such that ({}, 𝑌𝐿, 𝑒𝐿1 ≡ 𝑒𝐿2 ), (𝑒1, 𝑌 ) ⊑𝑉
(𝑒𝐿1 , 𝑌𝐿), and (𝑒2, 𝑌 ) ⊑𝑉 (𝑒𝐿2 , 𝑌𝐿). The justification for the rule is straightforward. Since (𝑒1, 𝑌 ) ⊑𝑉
(𝑒𝐿1 , 𝑌𝐿) and (𝑒2, 𝑌 ) ⊑𝑉 (𝑒𝐿2 , 𝑌𝐿), it must be the case that (𝑒𝐿1 , 𝑌𝐿) and (𝑒𝐿2 , 𝑌𝐿) are generalizations
of (𝑒1, 𝑌 ) and (𝑒2, 𝑌 ). That is, (𝑒𝐿1 , 𝑌𝐿) and (𝑒𝐿2 , 𝑌𝐿) must over-approximate the behavior of (𝑒1, 𝑌 )
and (𝑒2, 𝑌 ). Consequently, if (𝑒𝐿1 , 𝑌𝐿) and (𝑒𝐿2 , 𝑌𝐿) are equivalent, so are (𝑒1, 𝑌 ) and (𝑒2, 𝑌 ).

5 COUNTEREXAMPLE DETECTION
We now discuss our techniques for detecting inequivalence and producing counterexamples. We
begin with the simple case, where the inequivalence manifests itself through the expressions termi-
nating with different SWHNF values. Then we explain how we detect one-sided cycles: situations
where one expression evaluates to a SWHNF value and the other expression fails to terminate.
Inequivalent Values The Ineqiv-DC rule, shown in Figure 12, applies when the left-hand and
right-hand expressions have been reduced to SWHNF expressions that have distinct outermost
data constructors. In this case, the two expressions are inequivalent, and we report their execution
path as a counterexample. The rules Ineqiv-BotL and Ineqiv-BotR state that a labeled bottom is
inequivalent to any SWHNF expression except itself.
One-Sided Cycle Detection The one-sided cycle detection rules, CyL and CyR, are shown in
Figure 12. The cycle detection rules check if one expression has a non-terminating path while the

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 177. Publication date: October 2022.



177:14 John C. Kolesar, Ruzica Piskac, and William T. Hallahan

Ineqiv-DC
𝐷1 ≠ 𝐷2

𝑅, 𝑌, 𝐷1 ®𝑒1 . 𝐷2 ®𝑒2

Ineqiv-BotL
SWHNF(𝑒2) ⊥𝐿 ≠ 𝑒2

𝑅, 𝑌,⊥𝐿 . 𝑒2
Ineqiv-BotR

SWHNF(𝑒1) ⊥𝐿 ≠ 𝑒1

𝑅, 𝑌, 𝑒1 . ⊥𝐿

CyL
SWHNF(𝑒2) (𝑒1, 𝑌 ) ↩→∗ (𝑒′1, 𝑌 ′) (𝑒1, 𝑌 ) ⊑ (𝑒′1, 𝑌 ′)

𝑅, 𝑌, 𝑒1 . 𝑒2

CyR
SWHNF(𝑒1) (𝑒2, 𝑌 ) ↩→∗ (𝑒′2, 𝑌 ′) (𝑒2, 𝑌 ) ⊑ (𝑒′2, 𝑌 ′)

𝑅, 𝑌, 𝑒1 . 𝑒2

Fig. 12. Counterexample Rules

other expression has already terminated. CyL detects the case where the left-hand state (𝑒1, 𝑌 ) can
loop infinitely while (𝑒2, 𝑌 ) has already reached SWHNF and terminated. To detect non-termination,
CyL checks if there is some (𝑒′1, 𝑌 ′) such that (𝑒1, 𝑌 ) ↩→∗ (𝑒′1, 𝑌 ′) and (𝑒1, 𝑌 ) ⊑ (𝑒′1, 𝑌 ′). If this
is the case, then, by Theorem 3.1, there is an infinite reduction sequence beginning with (𝑒1, 𝑌 ).
Intuitively, the premises (𝑒1, 𝑌 ) ↩→∗ (𝑒′1, 𝑌 ′) and (𝑒1, 𝑌 ) ⊑ (𝑒′1, 𝑌 ′) mean that (𝑒1, 𝑌 ) can evaluate
to a state that is at least as general as itself. Since (𝑒′1, 𝑌 ′) is at least as general as (𝑒1, 𝑌 ), (𝑒′1, 𝑌 ′)
must have an execution path corresponding to any execution path that (𝑒1, 𝑌 ) has. (𝑒′1, 𝑌 ′) can
follow the path corresponding to (𝑒1, 𝑌 ) ↩→∗ (𝑒′1, 𝑌 ′) to reach another state (𝑒′′1 , 𝑌 ′′) such that
(𝑒′1, 𝑌 ′) ⊑ (𝑒′′1 , 𝑌 ′′), and so on to infinity, so we have an infinite reduction sequence. Because this
infinite sequence exists, (𝑒1, 𝑌 ) cannot be equivalent to an expression that has already terminated.
We report the one-sided cycle as a counterexample immediately. CyR works in the same way that
CyL does, but it handles the case where the right-hand expression is the non-terminating one.

6 AUTOMATED EQUIVALENCE CHECKING
We now detail the automation of nebula. nebula aims to prove the equivalence of two expressions
automatically, or to find a counterexample showing that the expressions are inequivalent, given an
initial mapping between the expressions’ symbolic variables.

6.1 Approximation Relations
The theoretical approximation relation ⊑ defined in Figure 7 is not computable. To implement the
equivalence checking algorithm, we use a simpler approximation relation ⊆, defined in Figure 13.
⊑ is not computable because certain rules check whether one expression can be reduced to another
expression. The corresponding rules for ⊆ simply check for syntactic alignment between two states.

As we state in Section 3 and demonstrate with Example 3.1, the use of evaluation in the definition
of ⊑ is essential to establish Theorem 3.1, the completeness of symbolic execution. The following
theorem, which can be proven by case analysis on the definitions of ⊑ and ⊆, allows us to use ⊑
and to benefit from symbolic execution completeness in theory, while using the computable ⊆ in
practice:

Theorem 6.1. If 𝑆1 ⊆ 𝑆2, then 𝑆1 ⊑ 𝑆2.

Because of this correspondence, we can justify the claim that 𝑆1 ⊑ 𝑆2 holds by checking that
𝑆1 ⊆ 𝑆2 holds. The rules in Figure 13 compute a mapping 𝑉 such that 𝑆1 ⊆𝑉 𝑆2 (alternatively,
𝑆1 ⊑𝑉 𝑆2.) These rules’ premises are judgments of the form𝑉 ′ ⊢ 𝑒1 ◁𝑉 ,𝑌1,𝑌2 𝑒2, which means that the
mapping 𝑉 can be extended to a new mapping 𝑉 ′ such that (𝑒1, 𝑌1) ⊑𝑉 ′ (𝑒2, 𝑌2). Most of the rules
walk over the structure of the expressions inductively. The most interesting rules are ◁-SymV1 and
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◁-SymV1
𝑠 ∉ 𝑌2 𝑠 ∉ 𝑉

𝑉 ∪ {𝑠 → 𝑒} ⊢ 𝑒 ◁𝑉 ,𝑌1,𝑌2 𝑠
◁-SymV2

𝑠 ∉ 𝑌2 𝑒 = lookup(𝑠,𝑉 )
𝑉 ⊢ 𝑒 ◁𝑉 ,𝑌1,𝑌2 𝑠

◁-SymLkL

∃𝑒 = lookup(𝑠, 𝑌1)
𝑉 ′ ⊢ 𝑒 ◁𝑉 ,𝑌1,𝑌2 𝑒2

𝑉 ′ ⊢ 𝑠 ◁𝑉 ,𝑌1,𝑌2 𝑒2
◁-SymLkR

∃𝑒 = lookup(𝑠, 𝑌2)
𝑉 ′ ⊢ 𝑒1 ◁𝑉 ,𝑌1,𝑌2 𝑒

𝑉 ′ ⊢ 𝑒1 ◁𝑉 ,𝑌1,𝑌2 𝑠

◁-Case

𝑉1 ⊢ 𝑒1 ◁𝑉 ,𝑌1,𝑌2 𝑒2
∀(𝐷 ®𝑥1 → 𝑒𝑖1) ∈ ®𝑎1.∃(𝐷 ®𝑥2 → 𝑒

𝑗

2) ∈ ®𝑎2.𝑉𝑖+1 ⊢ 𝑒𝑎1 ◁𝑉𝑖 ,𝑌1,𝑌2 𝑒
𝑎
2 [®𝑥1/®𝑥2]

𝑉𝑚+1 ⊢ case 𝑒1 of {( ®𝑎1 = 𝑎11 . . . 𝑎
𝑚
1 )} ◁𝑉 ,𝑌1,𝑌2 case 𝑒2 of {( ®𝑎2 = 𝑎12 . . . 𝑎

𝑚
2 )}

◁-Var
𝑉 ⊢ 𝑥 ◁𝑉 ,𝑌1,𝑌2 𝑥

◁-Lam
𝑉 ′ ⊢ 𝑒1 ◁𝑉 ,𝑌1,𝑌2 𝑒2 [𝑥1/𝑥2]

𝑉 ′ ⊢ 𝜆𝑥1 . 𝑒1 ◁𝑉 ,𝑌1,𝑌2 𝜆𝑥2 . 𝑒2
◁-DC

𝑉 ⊢ 𝐷 ◁𝑉 ,𝑌1,𝑌2 𝐷

◁-App

𝑉 ′ ⊢ 𝑒1 ◁𝑉 ,𝑌1,𝑌2 𝑒
′
1

𝑉 ′′ ⊢ 𝑒2 ◁𝑉 ′,𝑌1,𝑌2 𝑒
′
2

𝑉 ′′ ⊢ 𝑒1 𝑒2 ◁𝑉 ,𝑌1,𝑌2 𝑒
′
1 𝑒
′
2

◁-Bt
𝑉 ⊢ ⊥𝐿 ◁𝑉 ,𝑌1,𝑌2 ⊥𝐿

⊆-Link
𝑉 ⊢ 𝑒1 ◁{},𝑌1,𝑌2 𝑒2
(𝑒1, 𝑌1) ⊆𝑉 (𝑒2, 𝑌2)

Fig. 13. Computable Approximation

◁-SymV2. ◁-SymV1 applies when 𝑒2 is a symbolic variable not mapped by the current𝑉 , and adds 𝑒1
as the mapping for 𝑒2: 𝑉 ∪ {𝑠 → 𝑒} ⊢ 𝑒1 ◁𝑉 ,𝑌1,𝑌2 𝑠 . The rule ◁-SymV2 applies when 𝑒2 is a symbolic
variable already in 𝑉 , and checks that 𝑒1 is syntactically equal to the existing mapping––that is,
𝑉 ⊢ 𝑒1 ◁𝑉 ,𝑌1,𝑌2 𝑠 if 𝑒1 = lookup(𝑠,𝑉 ).

6.2 Equivalence Checking Loop
We describe the main verification algorithm here. In this section, we ignore the generation, proving,
and usage of lemmas. We will discuss integration of lemmas into the algorithm in Section 6.4.

The algorithm runs symbolic execution on pairs of states, keeping track of all of the branching
paths that it encounters. The execution stops periodically so that nebula can attempt to discharge
branches by proving the equivalence of the two expressions on a branch. The algorithm terminates
when it discharges every branch or finds a contradiction.

Tactics are the basis of nebula’s approach to proving equivalence. The main purpose of applying
a tactic to a branch is to discharge the branch by proving the equivalence of its two sides, but tactics
can also produce potential lemmas or identify counterexamples. We enumerate the proof tactics
employed by nebula in Section 6.3.

We refer to the branches that descend from the original proof goal as obligations. An obligation
is a linear record of the history of two expressions’ symbolic execution, divided into blocks that
represent different stages of simplification of the expressions. A new block is introduced each time
an expression reaches SWHNF and the rule DC-Eqiv or Lam-Eqiv from Figure 8 is applied. Blocks
allow us to enforce the productivity properties for both guarded and unguarded coinduction. The
verification algorithm deals mainly with obligations rather than dealing with state pairs directly
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LkDC-Sync
𝑠 ∉ 𝑌 𝑠 ∈ 𝑌2 𝐷 ®𝑠 = lookup(𝑠, 𝑌2)

(case 𝑠 of {𝐷 ®𝑥 → 𝑒𝑎 ; . . .}, 𝑌 ) ↩→𝑌2 (𝑒𝑎 [®𝑠 / ®𝑥], 𝑌 {𝑠 → 𝐷 ®𝑠})

Fig. 14. Symbolic Store Synchronization

because our primary techniques for proving equivalences require comparisons between different
points in expressions’ evaluation histories.

The main algorithm, shown as Algorithm 1, maintains a set 𝐻 of obligations. Reduction for the
most recent state pair in each obligation continues until it reaches a termination point––a point
where we consider applying coinduction or other tactics to the state. We will cover the formal
definition of a termination point later in this section. Once reduction finishes for each obligation,
we generate a set of updated obligations. An individual obligation from the old set can produce
one new obligation, multiple new obligations, or no obligations at all. We then apply tactics to
the obligations. If any application of a tactic to an obligation finds a contradiction, we terminate
the main loop and report that the two original expressions are not equivalent. After attempting to
apply every tactic to every obligation, we use the remaining obligations as the starting point for
the next loop iteration. If the set of obligations ever becomes empty, we terminate the loop and
report that the two original expressions are equivalent.

𝐻 ← {[((𝑒1, {}); (𝑒2, {}))]};
while 𝐻 not empty do

𝐻 ′ ← {};
for [. . . , (𝑆1𝑎, . . . , 𝑆1𝑏 ; 𝑆

2
𝑐 , . . . , 𝑆

2
𝑑
)] ∈ 𝐻 do

Run symbolic execution on 𝑆1
𝑏
and 𝑆2

𝑑
;

Get (𝑆1
𝑏+1, 𝑆

2
𝑑+1) from stopping points on both sides;

for (𝑆1
𝑏+1, 𝑆

2
𝑑+1) ∈ (𝑆

1
𝑏+1, 𝑆

2
𝑑+1) do

Make new obligations from (𝑆1
𝑏+1, 𝑆

2
𝑑+1) if possible;

if obligation creation fails then
return (𝑆1

𝑏+1, 𝑆
2
𝑑+1) as a counterexample;

else
Add the new obligations to 𝐻 ′;

for 𝑡 ∈ tactics do
Filter 𝐻 ′ with 𝑡 ;
if 𝑡 fails on any obligation then

return the obligation as a counterexample;
𝐻 ← 𝐻 ′;

return VERIFIED;
Algorithm 1: Verification Algorithm without Lemmas

Obligation Reductions Formally, an obligation𝐻 is a list of blocks, where a block 𝐵 is a pair of lists
of states (𝑆1𝑎, . . . , 𝑆1𝑏 ; 𝑆

2
𝑖 , . . . , 𝑆

2
𝑗 ) such that ∀𝑎 ≤ 𝑐 < 𝑏.𝑆1𝑐 ↩→∗

𝑌𝑗
𝑆1𝑐+1 and ∀𝑖 ≤ 𝑘 < 𝑗 .𝑆2

𝑘
↩→∗

𝑌𝑏
𝑆2
𝑘+1 .

The reductions ↩→𝑌2 and ↩→∗
𝑌2

are the same as ↩→ and ↩→∗, except with a single additional rule:
LkDC-Sync, shown in Figure 14. The rule LkDC-Sync ensures that concretizations of a variable stay
consistent between the two sides of an obligation. In ↩→𝑌2 and ↩→∗

𝑌2
, 𝑌2 is the symbolic store from

the latest state on the opposite side of the obligation. If 𝑠 has a concretization on the opposite side
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but not on the side being evaluated, LkDC-Sync copies the concretization from the opposite side’s
store into the store of the current state.

As a matter of notation, we denote the first state on either side of the first block of an obligation
as having an index of 1. If 𝑗 and 𝑘 are the last state indices on the two sides of block 𝐵𝑖 , then the
first states on the corresponding sides of block 𝐵𝑖+1 have indices of 𝑗 + 1 and 𝑘 + 1.
Recall that we form a new block whenever we apply DC-Eqiv or Lam-Eqiv. If 𝑆1𝑗 and 𝑆2

𝑘
are

the final states in a block 𝐵𝑖 , the expressions inside 𝑆1𝑗 and 𝑆2
𝑘
must be either data constructor

applications or lambda expressions. If the expressions are data constructor applications, then
the expressions in the starting states 𝑆1𝑗+1 and 𝑆2

𝑘+1 in 𝐵𝑖+1 are corresponding arguments from
the applications. If 𝑆1𝑗 and 𝑆2

𝑘
are lambda expressions, then the expressions in 𝑆1𝑗+1 and 𝑆2

𝑘+1 are
applications of those lambda expressions to the same fresh symbolic argument. We divide the state
histories in an obligation into blocks in order to uphold soundness for our proof tactics. Since we
treat the evaluation sequences on the left and right sides as decoupled, we need a way to ensure
that the two states we classify as equivalent actually represent corresponding points in the two
sides’ evaluation. Example 6.1 demonstrates why blocks are necessary for soundness:

Example 6.1. If we disregarded blocks, we could prove wrongly that S (S Z) = S Z. Let 𝑃1 be the
starting proof goal, namely S (S Z) = S Z. Removing the outer S constructors from both sides of
𝑃1 allows us to replace the proof goal with a new goal, S Z = Z, which we will call 𝑃2. The left-hand
expression in 𝑃2 is S Z, which is identical to the right-hand expression in 𝑃1. Since 𝑃2 is a descendant
of 𝑃1, it appears as if the left-hand expression from 𝑃1 has been reduced to a point (in 𝑃2) where it
is identical to the right-hand expression from 𝑃1. Appealing to the syntactic equality of the two
expressions would yield a proof of 𝑃1, but this is not actually valid reasoning because the reduction
from 𝑃1 to 𝑃2 does not happen by regular evaluation. Removing the S constructors in the reduction
from 𝑃1 to 𝑃2 creates a new block, so forbidding the use of syntactic equality between states from
different blocks prevents invalid theorems like 𝑃1 from being proven.

Symbolic Execution Termination Symbolic execution stops if the expression being evaluated
reaches SWHNF, but some expressions will never reach SWHNF no matter how many evaluation
steps they undergo. Because of this, we also stop symbolic execution if an expression is either a
fully-applied non-symbolic function or a case statement with a scrutinee that is a fully-applied
non-symbolic function. This guarantees termination because the only feature of 𝜆𝑆 that can prevent
symbolic execution from reaching SWHNF is recursion. To enforce the productivity properties
described in Section 4.2, and to ensure that we use coinduction soundly, we require that symbolic
execution have taken at least one step on each side before terminating.

Verification Process Initially, 𝐻 contains only one obligation: [((𝑒1, {}); (𝑒2, {}))], where (𝑒1, 𝑒2) is
the starting expression pair. During each iteration of the main loop, for each unresolved obligation
[. . . , (. . . , 𝑆1𝑗 ; . . . , 𝑆2𝑘 )], we apply reduction to 𝑆1𝑗 (assuming 𝑆1𝑗 is not in SWHNF already) to obtain a

new set of states 𝑆1
𝑗+1 such that ∀𝑆1𝑗+1 ∈ 𝑆1𝑗+1.𝑆1𝑗 ↩→∗𝑌 2

𝑘

𝑆1𝑗+1. Then, for each 𝑆
1
𝑗+1 = (𝑒1𝑗+1, 𝑌 1

𝑗+1) ∈ 𝑆1𝑗+1,

𝑆2
𝑘+1 is reduced using ↩→∗

𝑌 1
𝑗+1

to obtain a set of states 𝑆2
𝑘+1, which gives us new obligations

{[. . . , (. . . , 𝑆1𝑗 , 𝑆1𝑗+1; . . . , 𝑆2𝑘 , 𝑆
2
𝑘+1)] |𝑆

2
𝑘+1 ∈ 𝑆2𝑘+1}.

If either of the most recent states is already in SWHNF, we simply reduce the other state to obtain 𝑛
new states and append each new state to the appropriate side of the newest block in the obligation,
producing 𝑛 new obligations to take the place of the old one.
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6.3 Tactics
After performing symbolic execution, we apply tactics to the obligations in an effort to discharge
them or to produce counterexamples. Our proof rules and counterexample rules, as presented in
Sections 4 and 5, expect two expressions that share a symbolic store. However, our implementation
maintains separate symbolic stores for the left-hand and right-hand expressions in an obligation.
We will begin by explaining synchronization, our process for joining the two sides’ symbolic stores
together when applying tactics, and briefly explaining our motivation and justification for this
representation. Then we will enumerate the tactics that nebula uses in the main verification
algorithm.

6.3.1 Synchronization. When we apply tactics, we synchronize the left-hand and right-hand states
to be used for the tactic with each other.
Method If (𝑒1, 𝑌1) and (𝑒2, 𝑌2) are two states, then (𝑒1, 𝑌 ) and (𝑒2, 𝑌 ) are the synchronized versions
of the states, where 𝑌 = 𝑌1 ∪ 𝑌2. There is no risk of concretizations conflicting with each other
when we take the union since we only ever synchronize pairs of states from the same obligation. If
a symbolic variable 𝑠 has already been concretized on one side of an obligation, the reduction rule
LkDC-Sync ensures that 𝑠 cannot receive a conflicting concretization on the opposite side.
Justification Synchronizing the two sides of an obligation just before applying a tactic rather than
synchronizing immediately at every opportunity allows us to decouple the evaluation sequences
of an obligation’s two sides from each other. Allowing staggered present-state and past-state
combinations for tactics enables us to identify more opportunities to apply the tactics than we would
find otherwise. The latest left-hand and right-hand expressions may not retain any meaningful
connection over the course of multiple applications of symbolic execution. If the left-hand side and
right-hand side both reach cycles that are usable for coinduction, the cycles may not start or end at
the same time, and the two sides will not necessarily hit the same number of stopping points for
symbolic execution between the start and end of their cycles.

6.3.2 Tactics. nebula uses tactics including syntactic equality and cycle counterexample detec-
tion, as outlined in Sections 4 and 5. For the most part, the implementations of these tactics are
straightforward from the rules in those sections. However, the implementations of guarded and
unguarded coinduction rely heavily on the structure of the obligations and blocks.
Coinduction Coinduction, as described in Section 4.2, allows us to discharge obligations directly.
Consider two blocks within an obligation, which may or may not be distinct:

[. . . , (𝑆1𝑎, . . . , 𝑆1𝑏 ; 𝑆
2
𝑗 , . . . , 𝑆

2
𝑘
), . . . , (𝑆1𝑐 , . . . , 𝑆1𝑑 ; 𝑆

2
𝑚, . . . , 𝑆

2
𝑛), . . .]

Let 𝐵 be the first block, and let 𝐵′ be the second block. Coinduction can be unguarded or guarded.
For unguarded coinduction, 𝐵 and 𝐵′ are allowed to be the same block, but all four of the expressions
in the present states and past states must not be in SWHNF. For guarded coinduction, the expressions
from the present and past states can be in SWHNF, but 𝐵 and 𝐵′ must be distinct blocks.

Recall the rule RAdd from Figure 10 for adding state pairs to a relation set 𝑅. We want to be able
to apply RAdd to any 1 ≤ 𝑝1 < 𝑑 and 1 ≤ 𝑝2 < 𝑛, to add 𝑆1𝑝1 , 𝑆

2
𝑝2 to 𝑅. Then we could choose any

𝑝1 < 𝑞1 ≤ 𝑑 or 𝑝2 < 𝑞2 ≤ 𝑛 and attempt to use U-Coind (from Figure 10) to discharge either the
state pair (𝑆1

𝑑
, 𝑆2𝑞2 ) or the state pair (𝑆

1
𝑞1 , 𝑆

2
𝑛). We synchronize the two present states with each other

and the two past states with each other, so that (as the rules in Section 4.2 require) the present
states share a symbolic store and the past states share a symbolic store. Note that we do not need
to consider applying coinduction to 𝑆1𝑞1 and 𝑆

2
𝑞2 where both 𝑞1 ≠ 𝑑 and 𝑞2 ≠ 𝑛, because we have

considered that possibility already in some past loop iteration. For guarded coinduction, the past
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LemCo
𝑌 ′ = 𝑌1 ∪ 𝑌2

(𝑒1, 𝑌 ′) ≡ (𝑒2 [𝑉 (𝑠) / 𝑠], 𝑌 ′)
̸⊢ 𝑒1 ◁𝑉 ,𝑌1,𝑌2 𝑒2

LemGen

𝑒′1 ∈ scrutinees(𝑒1) 𝑒′2 ∈ scrutinees(𝑒2)
𝑒′1 = 𝑒′2 𝑠 fresh 𝑌 ′ = 𝑌1 ∪ 𝑌2
(𝑒1 [𝑠 / 𝑒′1], 𝑌 ′) ≡ (𝑒2 [𝑠 / 𝑒′2], 𝑌 ′)

̸⊢ 𝑒1 ◁𝑉 ,𝑌1,𝑌2 𝑒2

Fig. 15. Rules for Lemma Introduction

states that we add to 𝑅 need to have indices 1 ≤ 𝑝1 ≤ 𝑏 and 1 ≤ 𝑝2 ≤ 𝑘 , and we use the rule G-Coind
(also from Figure 10) instead. Everything else remains the same as it is for unguarded coinduction.

6.4 Lemmas
Lemmas allow us to modify expressions before applying ⊆ and coinduction to them. Section 4.3
covers the rules and conditions that allow us to apply lemmas soundly. Here, we discuss both the
practical implementation of the rules and the heuristics that we use to select potential lemmas.
Coinduction Lemmas We use lemmas to rewrite states into forms that are more amenable for ⊆
and coinduction. Consequently, we generate potential lemmas in situations where ⊆ fails to hold.
If we have two states such that (𝑒1, 𝑌1) ̸⊆ (𝑒2, 𝑌2), we may be able to generate a lemma that, once
proven, allows us to rewrite one of the two states so that the approximation holds.

LemCo in Figure 15 shows how we produce possible lemmas from failed approximation attempts.
Specifically, LemCo generates possible lemmas in situations where ◁𝑉 ,𝑌1,𝑌2 fails to hold between
two expressions, ̸⊢ 𝑒1 ◁𝑉 ,𝑌1,𝑌2 𝑒2. We use these expressions to create the possible lemma

(𝑒1, 𝑌 ′) ≡ (𝑒2 [𝑉 (𝑥) / 𝑥], 𝑌 ′).

If we prove the lemma, we may be able to rewrite the first function application with it to create
a situation where ◁𝑉 ,𝑌1,𝑌2 holds. Note that, if we let 𝑉𝐼 denote the identity mapping on variables,
(𝑒1, 𝑌 ′) ⊆𝑉𝐼 (𝑒1, 𝑌 ′). Consequently, once we prove the lemma, the rule LemmaLeft from Figure 11
can replace 𝑒1 with 𝑒2 [𝑉 (𝑥) / 𝑥]. We can see that 𝑒2 [𝑉 (𝑥) / 𝑥] ◁𝑉 ,𝑌1,𝑌2 𝑒2, and so it is possible that
◁𝑉 ,𝑌1,𝑌2 will hold for the entirety of the initial expression after the rewriting.
Recall the two lemma productivity properties from Section 4.3 that are sufficient for enforcing

sound lemma usage. The first property requires that the expression receiving a substitution based
on the lemma is an application of some function 𝑓 . The second property requires that the function
𝑓 not appear syntactically in the expression 𝑒2 [𝑉 (𝑥) / 𝑥] being added by the substitution, or in
any functions directly or indirectly callable by 𝑒2 [𝑉 (𝑥) / 𝑥]. Both requirements can be confirmed
before applying a lemma with a simple syntactic check.
Generalization Lemmas The generalization tactic generates potential lemmas that, if proven, can
be used to discharge a pair of states 𝑆1 = (𝑒1, 𝑌1) and 𝑆2 = (𝑒2, 𝑌2) from opposite sides of the same
block. To generate these potential lemmas, we define a function to accumulate a non-exhaustive
set of the scrutinees of (possibly nested) case statements on either side:

scrutinees(𝑒) =
{
{𝑒′} ∪ scrutinees(𝑒′) 𝑒 = case 𝑒′ of {®𝑎}
{} otherwise

If an expression in scrutinees(𝑒1) is syntactically equal to an expression in scrutinees(𝑒2), then we
create a potential lemma where the matching scrutinees in 𝑒1 and 𝑒2 are replaced with the same
fresh symbolic variable. The rule LemGen in Figure 15 formalizes this. If we prove the lemma, we
can use it to discharge the original obligation by applying the LemmaOver rule from Figure 11.
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HgLookup
𝑠′ = lookup(𝑠 𝑒, 𝑌 )
(𝑠 𝑒, 𝑌 ) ↩→ (𝑠′, 𝑌 )

HgFresh
𝑠 𝑒 ∉ 𝑌 𝑠′ fresh

(𝑠 𝑒, 𝑌 ) ↩→ (𝑠′, 𝑌 {𝑠 𝑒 → 𝑠′})

Fig. 16. Evaluation for Symbolic Functions

Lemma Implementation Augmenting Algorithm 1 to support lemmas requires a few changes.
Every potential lemma receives a fresh name 𝐿 to differentiate it from other potential lemmas. We
add lemma obligations to 𝐻 , but we tag every obligation for a potential lemma with the potential
lemma’s name. We know that we have finished proving a lemma 𝐿 when every obligation in 𝐻

with 𝐿 as its tag has been discharged.
We also tag each potential lemma with a generating state pair (𝑆𝑖𝑚, 𝑆𝑖𝑛), which is the pair of states

that caused us to generate the potential lemma when ⊆ failed to hold. If we succeed in proving
the lemma, we retry the coinduction tactic––with the new lemma in hand––on all obligations that
include the states 𝑆𝑖𝑚 and 𝑆𝑖𝑛 , with all appropriate state pairs from the other side. We discharge all
obligations for which coinduction succeeds with the new lemma.
Before we add any new potential lemma to the list of potential lemmas to prove, we perform a

few checks to avoid redundant work. If the new potential lemma is implied by a lemma that has
already been proven, is equivalent to a potential lemma that has been proposed but not proven yet,
or implies a previously-proposed potential lemma that has been disproven, we discard the potential
lemma instead of attempting to prove it. Here, we mean that one potential lemma 𝐿 implies another
potential lemma 𝐿′ if the generating state pair of 𝐿 approximates the generating state pair of 𝐿′
according to ⊆. 𝐿 and 𝐿′ count as equivalent if the approximation works in both directions.
Lemmas for Syntactic Equality In addition to allowing lemma usage with coinduction, we also
generate potential lemmas from failed attempts at proving syntactic equality, and we apply lemmas
when checking for syntactic equality. The changes to syntactic equality match the changes to
coinduction closely: potential lemmas are generated from the sub-expressions that cause a syntactic
equality check to fail, and, if the lemma is proven, we attempt syntactic equality again on the
generating state pair.

6.5 Symbolic Functions
Our implementation supports symbolic function variables, although our earlier formalism does not.
The reduction rules for symbolic function applications appear in Figure 16. As symbolic execution
proceeds, we record symbolic function applications that we have encountered in the symbolic store,
just as we record concretizations of ordinary symbolic variables. If a symbolic function application
we are evaluating is syntactically identical to one encountered previously, we apply HgLookup to
introduce the same variable that we used before. Otherwise, we apply HgFresh to introduce a new
symbolic variable. For simplicity, we check only for syntactic equality between symbolic function
applications rather than performing a more thorough equivalence check.

Our verification process remains sound when we introduce symbolic functions, as the symbolic
variable that replaces a symbolic function application can assume any value of its type, including
⊥𝐿 . This means that our handling of symbolic functions can only make proof goals more general.

Although verification remains sound when we support symbolic functions, symbolic functions
do introduce the possibility of spurious counterexamples. Expressions can be equivalent even if
they are not syntactically identical, so nebula may assign two equivalent applications of a symbolic
function to two distinct symbolic variables. If the two variables receive different concretizations,
the choice of concretizations will represent an impossible situation. nebula cannot detect the
inconsistency, and it may derive a spurious counterexample from the branch. Nevertheless, spurious
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counterexamples are rare in practice. In our evaluation, nebula never rejected any theorem, valid
or invalid, because of a spurious counterexample.

6.6 Total Variables
In our implementation, we allow users to mark specific symbolic variables as total. Total symbolic
variables and their descendants cannot be concretized as bottoms. To support total symbolic
variables soundly, an additional condition needs to hold for approximations between states. If the
approximation mapping 𝑉 maps the symbolic variable 𝑠 to an expression 𝑒 , and 𝑠 has been marked
as a total variable, then 𝑒 needs to be total as well for the approximation to be valid. Checking
totality for expressions in general is undecidable, so the only expressions that we count as total
for approximations are data constructors, symbolic variables that have been marked as total, and
applications of expressions that are total by the same definition.

Totality works differently for symbolic functions than it does for symbolic variables of algebraic
datatypes. We never concretize symbolic functions, so, for our purposes, a total function is one
that always maps total inputs to total outputs. During symbolic execution, if we encounter an
application of a total symbolic function to arguments that are all total according to our definition
from before, we mark the fresh variable that we use as a substitute for the application as total.

7 EVALUATION
We implemented our techniques for equivalence checking with coinduction and symbolic execution
in a practical tool, nebula. nebula is written in Haskell, and it checks equivalence of Haskell
expressions automatically. nebula is open source. It is available as part of the G2 symbolic execution
engine at https://github.com/BillHallahan/G2 or as a virtual machine image at [Kolesar et al. 2022].

In our evaluation of nebula, we seek to answer two main questions. (1) When given theorems
that hold in a non-strict context, does nebula succeed in proving their correctness? (2) When given
theorems that hold only in a strict context, does nebula succeed in both (a) finding counterexamples
in general and (b) finding non-terminating counterexamples for theorems that have them?

We base our evaluation on the 85 theorems from the IsaPlanner suite [Johansson et al. 2010], as
they are formulated in the Zeno codebase [Sonnex et al. 2012]. For our main evaluation, we simply
run nebula on the original formulations of the theorems. Many of the theorems do not hold in a
non-strict setting, so we use the true ones for question (1) and the false ones for question (2). As a
further assessment of question (1), we also run nebula on modified versions of the invalid theorems
that hold even when evaluation is non-strict. We group the invalid theorems into two categories.
Some of the theorems do not handle errors properly, and requiring some of their arguments to be
total makes the theorems true. For other theorems, the possibility of one side diverging while the
other terminates is a problem. In these cases, we force one or more of the theorem’s arguments to
be finite to make the theorem true. If a theorem needs both totality requirements and finiteness
requirements to be true in a non-strict setting, we include it in the second category.

Test Suite We give nebula its inputs in the form of rewrite rules. Rewrite rules are constructs that
allow a programmer to express domain-specific optimizations to the GHC Haskell compiler [Pey-
ton Jones et al. 2001]. A rewrite rule consists of a number of universally quantified variables, a
pattern for expressions to be replaced, and a pattern for replacement expressions. The two expres-
sions are defined in terms of the universally quantified variables. GHC does type-check rewrite
rules, but it does not check that the rules preserve a program’s behavior otherwise. We designed
nebula to take its inputs in the form of rewrite rules to allow for easy rewrite rule verification.

The process for converting theorems into rewrite rules is simple. In the Zeno code, every theorem
is a function with a return type of Bool. If the outermost layer of a theorem’s function body is an
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equality check between two sub-expressions, then we represent the theorem as a rewrite rule that
asserts the equality of the two sub-expressions. Otherwise, we represent the theorem as a rewrite
rule that asserts that the theorem’s whole expression is equal to True. In either case, the universally
quantified variables for the rewrite rule are the arguments of the original theorem’s function.

Requirements for the Theorems Every theorem in our suite is true under the assumption that
all arguments are total and finite. However, most of the theorems no longer hold in their original
formulations in a non-strict context. We run nebula on every unmodified theorem to see whether
it can verify the ones that remain true and find counterexamples for the ones that become false.
To assess nebula’s verification abilities further, we also run it on modified versions of the invalid
theorems. The modified theorems include extra requirements to make them true in a non-strict
context. Some of the modified versions of the theorems require certain variables to be total. Others
remove infinite concretizations of specific variables from consideration by forcing the evaluation
of one or both sides not to terminate when given an infinite input.

We can require the arguments of a rewrite rule to be total, as outlined in Section 6.6, by designating
them as total in the settings of nebula. To force finiteness for an argument, we use type-specific
walk functions. A walk function for an algebraic datatype 𝜏𝑤 takes two arguments, one of type 𝜏𝑤
and one polymorphic argument of type 𝜏𝑝 . The walk function traverses over some portion of the 𝜏𝑤
argument. The traversal ensures that the function application will raise an error if that portion of
the argument is non-total or will fail to terminate if that portion of the argument is infinite. Once
the traversal finishes, the walk function returns its 𝜏𝑝 argument.
We add walk functions manually to the theorems that need them. When a variable needs to be

finite, we wrap the main expression on one or both sides of a rewrite rule with an application of
the corresponding walk function. For example, consider the rewrite rule prop10:

forall m . m - m = Z

Recall from Section 2, Example 2.3, that this rule is false if m is infinite, i.e. m = S m. Now consider
an altered version of prop10 that includes a walk function on the right-hand side:

walkNat Z a = a

walkNat (S x) a = walkNat x a forall m . m - m = walkNat m Z

The left-hand side still diverges if m is infinite, but now the right-hand side diverges as well. Further,
there is no need to make m total now: both m - m and walkNat m Z force m to be evaluated fully, so if
m is non-total, both expressions will terminate with the same bottom value.
We utilize three different walk functions in our evaluation. The function walkNat applies to

natural numbers. The function walkList forces the spine of a list to be total and finite but does not
impose any restrictions on the contents of the list. The function walkNatList forces the spine of a
natural number list to be total and finite and also applies walkNat to every entry within the list. For
the sake of simplicity, we do not consider any finer distinctions for finiteness, even though finer
distinctions are possible. In cases where the minimum conditions necessary for a theorem to hold
are not expressible in our system, we over-approximate the conditions.

7.1 Results
We give each theorem a time limit of 3 minutes. We ran nebula on a 2.4 GHz Intel Core i9 laptop.
Table 1 summarizes the results of our evaluation.

We report a positive answer for question (1): nebula can prove theorems that hold in a non-strict
context. Of the 85 unmodified theorems, 24 are true in a non-strict context. nebula proves the
correctness of 22 of the 24 correct theorems (92%) and hits the time limit for the other two.
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Table 1. Evaluation results. # Thms indicates the number of theorems in a category. # V indicates the number

of theorems in the category that were verified. # C indicates the number of theorems that nebula marked as

untrue by finding counterexamples. # TO indicates the number of timeouts in a category. Avg. V Time is the

average time that nebula takes to verify the theorems that it proved in a category. Avg. C Time is the average

time that nebula takes to find a counterexample for the theorems in a category that it rejected.

Category # Thms # V # C # TO Avg. V Time (s) Avg. C Time (s)
Unmodified Theorems 85 22 61 2 11.3 15.1
Modified (No Finite Variables) 18 11 0 7 16.7 N/A
Modified (Finite Variables) 56 12 0 44 6.0 N/A
Cycle Counterexamples 44 0 32 12 N/A 5.5

As an additional assessment of question (1), we also run nebula on the theorems modified
with totality requirements and finiteness requirements. There are 17 theorems that can be made
true with totality requirements and no finiteness requirements. For one of the theorems, namely
theorem 23, there are two different possible minimal totality requirements. We can view the two
different modified versions of theorem 23 as distinct theorems, bringing the count to 18 for this
category. With the minimum totality requirements in place, nebula proves 11 of the theorems
(61%) and hits the time limit on the remaining 7. There are also 44 theorems that are only true when
certain variables are required to be finite. 12 of the 44 theorems have two distinct combinations of
minimal totality and finiteness requirements, so we effectively have 56 theorems in this category.
nebula verifies 12 of the theorems (21%) and hits the time limit on the rest.
We also report a positive answer for both parts of research question (2). For part (a), we can

see that nebula succeeds at finding counterexamples in general because it produces a genuine
counterexample for every single one of the 61 unmodified untrue theorems.
For part (b) of question (2), we have nebula attempt to find cycle counterexamples for the 44

unmodified theorems that need finite variables to be true. The suite of unmodified theorems does
not suffice for testing this: all of the theorems with non-terminating counterexamples also have
terminating counterexamples that involve bottom values. To test nebula’s ability to detect cycle
counterexamples, we required totality for all of the theorems’ arguments but did not impose any
finiteness requirements. Requiring all of the arguments to be total makes non-cyclic counterexam-
ples impossible. Under these conditions, nebula finds genuine cycle counterexamples for 32 of the
44 theorems (73%) and hits the time limit for the other 12.

7.2 Discussion of Results

Finite-Variable Benchmarks nebula performs well on the unmodified benchmarks and the
totality-requiring benchmarks, but it performs relatively poorly on the finiteness-requiring bench-
marks. We do not consider this a major cause for concern. Walk functions are abnormal constructs
that do not resemble the code that a programmer would typically write in a non-strict language,
and we include them specifically to counteract the non-strict behavior of Haskell.
nebula’s relatively low success rate on the finiteness-requiring benchmarks stems primarily

from its reliance on coinduction as its primary proof tactic. In general, coinduction is not the
best fit for verifying properties involving functions that reach SWHNF only on finite inputs. An
induction-based proof technique would likely be more appropriate in such a situation. This is the
reason why many of the modified benchmarks with finite variables fail: the walk functions used in
the modified versions of the theorems terminate only on finite inputs. In particular, nebula fails to
verify any modified theorem where a list of natural numbers needs to have only finite entries. It
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height :: Tree a -> Nat

height Leaf = Z

height (Node l x r) = S (max (height l) (height r))

Fig. 17. The height Function

also fails to verify any modified theorem that includes walk functions for two or more variables.
Several of the failing theorems among the unmodified theorems and the modified theorems with
only total variables face similar issues. For instance, nebula does not verify any valid theorem
involving the rev and sort functions for lists: both functions can traverse the whole spine of their
input list before reaching SWHNF.
Inadequate Proof Tactics Walk functions are a major obstacle for nebula, but some recursive
functions that do reach SWHNF on infinite inputs also present difficulties. For example, the height

function on binary trees, shown in Figure 17, is not well-suited for nebula’s proof tactics. Because
height interleaves applications of max with recursive applications of itself, symbolic execution adds
an extra max application to the expression with every layer of recursion, and this prevents any use
of the coinduction tactic. The development of techniques for reasoning about functions like height

coinductively is an interesting opportunity for future work.
Impact of the Time LimitWebelieve that the 3-minute time limit for the evaluation does not inhibit
nebula’s performance in any significant way. Usually, when nebula can prove an equivalence,
it finds the cyclic pattern that it needs for coinduction rather quickly. nebula’s average times
for proving equivalences and finding counterexamples in our evaluation are all under 20 seconds.
When nebula reaches the time limit for a theorem, what typically happens is that the evaluation
of one or both expressions proceeds down an infinite path with no obvious cyclic pattern. As
evaluation continues, the proof obligation for that path will keep branching into more obligations
that nebula has no way of discharging. This state explosion prevents nebula from making any
real progress toward verifying the equivalence. Because nebula behaves in this way in situations
where it reaches the time limit, giving nebula additional time to run is unlikely to improve its
verification coverage in most cases.

8 RELATEDWORK

Coinduction nebula relies on coinduction, a well-established proof technique [Gibbons and
Hutton 2005; Gordon 1995; Kozen and Silva 2017; Rutten 2000; Sangiorgi 2009]. Our primary
contribution is the development of a calculus to combine coinduction with symbolic execution,
along with the use of that calculus to automate coinductive reasoning for a functional language.

Other researchers have examined the possibility of using coinduction to verify programs’ equiva-
lence previously [Koutavas and Wand 2006; Sangiorgi et al. 2007]. Unlike our approach for nebula,
the formalizations in [Koutavas and Wand 2006] and [Sangiorgi et al. 2007] do not take infinite
or non-total inputs into consideration. More importantly, the two papers only provide theoretical
frameworks for proving programs’ equivalence by coinduction, not an automated algorithm for
generating proofs like the one that we introduce.
Interactive Tools Interactive tools allow a user to prove properties of programs manually or
semi-automatically. An interactive setup has the advantage that it might allow the prover to verify
larger or more complex properties, but proving each property requires more manual effort.
CIRC [Lucanu and Roşu 2007; Roşu and Lucanu 2009] generates coinductive proofs for values

and properties specified in Maude, a logic language. In contrast, nebula targets the functional
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language Haskell. For CIRC’s purposes, expressions do not have complete definitions that specify
an unambiguous evaluation order for all possible inputs. Instead, CIRC relies on axioms that allow
it to make certain substitutions for expressions. While CIRC supports some simple automation, it
requires much more manual effort to prove properties than nebula requires. For example, CIRC
cannot apply case analysis automatically to decompose a property into several subproperties,
whereas nebula applies case analysis automatically every time it concretizes a symbolic variable.

HERMIT [Farmer et al. 2015] is an interactive verification tool for Haskell programs that accounts
for the possibility of bottom expressions. The design of HERMIT is quite different from the design
of nebula: like CIRC, HERMIT relies on guidance from users in order to find proofs. Users can
guide HERMIT to a proof through the tool’s interactive REPL.

[Mastorou et al. 2022] describes a method for using the LiquidHaskell verifier to prove coinductive
properties. The outlined techniques rely on a guardedness property which states that values are
produced, and thus, in contrast to our approach with nebula, they cannot be used to prove
equivalence of non-terminating expressions. The approach also relies on user-written proofs to
guide the verifier.
Hs-to-coq [Breitner et al. 2018] automates translation of Haskell code into Coq code, allowing

users to verify properties of their Haskell code within Coq. While [Breitner et al. 2018] discusses
only inductive proofs, hs-to-coq has been extended to support verification of coinductive proper-
ties [Breitner 2018]. However, this verification is not automated: it requires manually-written Coq
proofs.
[Leino and Moskal 2014] describes the integration of features supporting coinduction into the

modular verifier Dafny. Dafny requires user-provided annotations to specify function and loop
behavior, unlike nebula, which aims to prove equivalences automatically.

Functional Automated Inductive Proofs Zeno [Sonnex et al. 2012], HipSpec [Claessen et al.
2013], Cyclist [Brotherston et al. 2012], and IsaPlanner [Johansson et al. 2010] are automated
theorem provers targeting properties of functional programs. These tools assume strict semantics
and, correspondingly, total and finite data structures. Zeno and HipSpec accept Haskell programs
as input, but both fail to reason about Haskell in a completely accurate way because they ignore
infinite and non-total inputs, unlike nebula. Our evaluation highlights the difference. It uses the
same benchmarks as Zeno, HipSpec, and IsaPlanner, but only 28% of these theorems are true under
non-strict semantics, whereas all of them are true under strict evaluation.

Imperative Symbolic Execution RelSym [Farina et al. 2019] is a symbolic execution engine for
proving relational properties of imperative programs. RelSym depends on user-provided invariants
in order to reason about loops. Differential symbolic execution [Person et al. 2008] is a technique
for detecting behavioral differences that arise from changes to a program. It exploits optimizations
based on the assumption that the old and new versions of the program are mostly similar.

(Non)Termination Checking Looper [Burnim et al. 2009], TNT [Gupta et al. 2008], Jolt [Carbin
et al. 2011], and Bolt [Kling et al. 2012] detect non-termination of imperative programs. Like nebula,
these tools rely on finding program states that are, in some sense, repetitions of earlier states. [Le
et al. 2020] and [Cook et al. 2014] detect both program termination and non-termination. Both focus
on non-linear integer programs, as opposed to the data-structure-heavy programs that nebula
targets. [Nguyễn et al. 2019] uses symbolic execution and the size-change principle [Lee et al. 2001]
to prove termination of functional programs but, unlike nebula, does not prove non-termination.

Symbolic Functions [Nguyễn and Van Horn 2015] handles symbolic functions during symbolic ex-
ecution by using templates to concretize function definitions gradually. It is possible that techniques
from [Nguyễn and Van Horn 2015] could complement nebula by allowing us to guarantee the
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correctness of apparent counterexamples. However, our current approach of over-approximation
allows us to consider fewer states when we aim to confirm an equivalence.

9 CONCLUSION
We have presented nebula, the first fully automated expression equivalence checker designed with
non-strictness inmind.We used nebula both to verify correct theorems and to find counterexamples
for incorrect theorems that hold in a strict setting. We have evaluated our tool in practical settings
with promising results.

We view the verification of rewrite rules in production Haskell code as a potential application for
nebula. Rewrite rules see significant use on Hackage, the main repository of open-source libraries
for the Haskell community. In our preliminary survey, we have found that there are over 5000
rewrite rules across more than 300 libraries on Hackage. Consequently, our tool has the potential
to assist Haskell programmers with the verification and debugging of rewrite rules. We plan to
explore this possibility further in future work.

10 DATA AVAILABILITY STATEMENT
The artifact for nebula is available at [Kolesar et al. 2022]. The artifact contains all of the code
necessary to reproduce the results presented in Section 7, along with instructions for running the
evaluation suite.
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(b) An incorrect proof tree

Fig. 18. An unsound use of lemmas (in particular, LemmaLeftUS is LemmaLeft bad, with two premises

removed) that causes coinduction to prove incorrectly that a terminating program and a non-terminating

program are equivalent.

11 APPENDIX
11.1 Incorrect Lemma Usage
As stated in Section 4.3, relaxing the lemma productivity properties allows for the derivation of
unsound conclusions. Figure 18 shows an example of a situation where LemmaLeftUS, a faulty
version of LemmaLeft, leads to a proof of an untrue equivalence.

11.2 Symbolic Function Consistency
As discussed in Section 6.5, our implementation of symbolic functions can lead to spurious coun-
terexamples. The possibility of spurious counterexamples has repercussions for our handling of
one-sided cycle detection. An approximation for one-sided cycle detection does not represent a real
counterexample if it maps expressions with differently-concretized symbolic function mappings
to each other. Suppose that p is a symbolic function of type Nat -> Bool and that a and b are two
symbolic variables of type Nat. On a branch where p a is True and p b is False but neither a nor b
is concretized, a should not count as approximating b. Replacing b with a in an expression does not
preserve the expression’s behavior perfectly because p has different mappings for the two variables.

We can avoid spurious cyclic counterexamples with this problem by enforcing an extra symbolic

function consistency requirement on any approximation mapping 𝑉 for a one-sided cycle. Let 𝑌1 be
the symbolic store for the present state 𝑆1, and let 𝑌2 be the symbolic store for the past state 𝑆2. Let
𝑒1 be a symbolic function application mapped to the variable 𝑠1 in 𝑌1. Let 𝑒2 be another symbolic
function application mapped to 𝑠2 in 𝑌2. Let 𝑉 be a mapping for an approximation between 𝑆1 and
𝑆2. If any expressions with symbolic function mappings from the symbolic store in the past align
with expressions that have symbolic function mappings in the symbolic store in the present, then
the mappings for the two expressions also need to align:

∀(𝑒1, 𝑠1) ∈ 𝑌1, (𝑒2, 𝑠2) ∈ 𝑌2.(𝑒1, 𝑌1) ⊆𝑉 (𝑒2, 𝑌2) ⇒ (𝑠1, 𝑌1) ⊆𝑉 (𝑠2, 𝑌2)
Importantly, the mapping 𝑉 for symbolic function consistency is fixed to be the same mapping

from the main approximation. If an approximation that holds between two symbolic function
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applications requires a different set of mappings than the main approximation does, then we do
not need to worry about it.
Note that our enforcement of symbolic function consistency is only a helpful heuristic for

rejecting certain spurious counterexamples, not a requirement for soundness. There is no need to
check symbolic function consistency when applying regular tactics for verification. To see why, let
𝑒1 and 𝑒2 be two symbolic function applications such that (𝑒1, 𝑌1) ⊑ (𝑒2, 𝑌2) for some symbolic
stores𝑌1 and𝑌2 but 𝑒1 and 𝑒2 are not syntactically equal. Let 𝑠1 and 𝑠2 be the fresh symbolic variables
used for 𝑒1 and 𝑒2, respectively. Suppose that, as the verification algorithm runs, we produce and
discharge an obligation𝐻 where 𝑠1 and 𝑠2 have inconsistent concretizations. Discharging𝐻 does not
make the verification algorithm unsound: the concretizations for 𝑠1 and 𝑠2 represent an impossible
situation, so the equivalence for 𝐻 holds vacuously. Additionally, in order to verify the theorem
fully, we will still need to cover all of the cases where 𝑠1 and 𝑠2 have consistent concretizations.
Taking impossible concretizations into consideration may prevent nebula from verifying certain
theorems, but it does not allow nebula to disregard any cases that really need to be proven.

11.3 Benchmark Construction Details
As described in Section 7, our evaluation is based on an existing suite of properties. The properties
were designed with strict evaluation in mind, and thus many of the properties are false in a non-
strict language. Here we provide additional details about how we converted the false properties
into true properties.
If a theorem requires multiple variables to be finite, we need to have multiple nested walk

function applications. Whenever multiple variables need walk function applications for a single
theorem, the order that we use for the walk function application nesting is the same as the order
that the original theorem’s arguments follow. On both sides, the walk function applications for
earlier arguments appear outside the walk function applications for later arguments. We impose
our walk-function ordering requirement for the sake of simplicity. Allowing for more variation in
the order of walk function applications would cause the number of options for minimal finiteness
requirements to grow significantly without any evident benefit for demonstrating the capabilities
of nebula. Furthermore, if we allowed different walk-function application orders between the two
sides of a theorem, simple counterexamples would be possible for any combination with differing
orders between the two sides. Let a and b be two symbolic variables of type Nat, and consider the
expressions walkNat a (walkNat b Z) and walkNat b (walkNat a Z). If we define a as ⊥𝐿 and b as
S b, then walkNat a (walkNat b Z) evaluates to⊥𝐿 and walkNat b (walkNat a Z) fails to terminate.
We can circumvent the problem by requiring a and b to be total, but we still do not derive any clear
benefit from permitting variation in walk-function application orders.

For some Zeno theorems, there are two distinct minimal combinations of restrictions on finiteness
and totality that make the theorem true. In situations where multiple minimal combinations of
requirements exist, we treat the versions of the theorem with the two combinations of requirements
as if they were distinct theorems. No theorem in the Zeno suite has more than two minimal
alternatives that are expressible in our system of requirements for totality and finiteness.

11.4 ⊑ Lemmas and Theorems
Lemma 11.1 (⊑ preserved by inlining). If (𝑒1, 𝑌1) ⊑𝑉 (𝑠, 𝑌2) and 𝑒2 = lookup(𝑠, 𝑌2), then
(𝑒1, 𝑌1) ⊑𝑉 (𝑒2, 𝑌2).

Proof. Follows immediately from the definitions of ⊑-Sym1 and ⊑-Eval. □

Corollary 11.2. If (𝑒1, 𝑌1) ⊑𝑉 (𝑒2, 𝑌2) and 𝑒′2 is 𝑒2 with all symbolic variable concretizations from

𝑌2 inlined, then (𝑒1, 𝑌1) ⊑𝑉 (𝑒′2, 𝑌2).
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Lemma 11.3 (⊑ transitive). If 𝑆1 ⊑ 𝑆2 and 𝑆2 ⊑ 𝑆3 then 𝑆1 ⊑ 𝑆3.

Proof. To start, note that we can assume that there is no overlap between the symbolic variables
in 𝑆2 and the symbolic variables in 𝑆3. If there is any overlap, we can simply give fresh names to
all of the symbolic variables in 𝑆2 to eliminate the overlap while preserving the approximations
between 𝑆1 and 𝑆2 and between 𝑆2 and 𝑆3. The result that we derive at the end is still the one that
we wanted originally, namely that 𝑆1 ⊑ 𝑆3, since 𝑆1 and 𝑆3 do not change.

Let (𝑒1, 𝑌1) = 𝑆1, let (𝑒2, 𝑌2) = 𝑆2, and let (𝑒3, 𝑌3) = 𝑆3. Let 𝑉 be the mapping such that 𝑆1 ⊑𝑉 𝑆2,
and let 𝑉 ′ be the mapping such that 𝑆2 ⊑𝑉 ′ 𝑆3. For the new approximation, we will need a new
mapping 𝑉 ′′. For each mapping (𝑠, 𝑒) ∈ 𝑉 ′, let 𝑒′ be 𝑒 with all of the symbolic variables from 𝑌2
inlined, and let lookup(𝑠,𝑉 ′′) = 𝑒′. Also, for any mapping (𝑠, 𝑒) ∈ 𝑉 , let 𝑉 ′′ map 𝑠 to 𝑒 . There
are no common symbolic variables between 𝑆2 and 𝑆3, so, if any symbolic variable 𝑠 is mapped
by both 𝑉 and 𝑉 ′, at least one of the two mappings must be irrelevant. In 𝑉 ′′, there should be a
mapping for 𝑠 based on the mapping in 𝑉 or 𝑉 ′ that is actually needed for one of the two original
approximations. We will prove that 𝑆1 ⊑𝑉 ′′ 𝑆3 by induction on the relation 𝑆2 ⊑𝑉 ′ 𝑆3.
Deterministic Evaluation on the Left This is not one of the main cases, but we are covering it
here so that, in the subsequent cases, we can ignore the possibility that ⊑-Eval is the main rule
used for the approximation (𝑒1, 𝑌1) ⊑𝑉 (𝑒2, 𝑌2). Assume for this case that it is the main rule. This
means that there exists some 𝑒′1 such that (𝑒1, 𝑌1) ↩→∗ (𝑒′1, 𝑌1) and (𝑒′1, 𝑌1) ⊑𝑉 (𝑒2, 𝑌2). If we can
use the facts that (𝑒′1, 𝑌1) ⊑𝑉 (𝑒2, 𝑌2) and (𝑒2, 𝑌2) ⊑𝑉 ′ (𝑒3, 𝑌3) to derive that (𝑒′1, 𝑌1) ⊑𝑉 ′′ (𝑒3, 𝑌3),
it follows immediately that (𝑒1, 𝑌1) ⊑𝑉 ′′ (𝑒3, 𝑌3) by ⊑-Eval. This means that, in the following cases,
we can ignore the possibility that ⊑-Eval is used as the main rule for the approximation between 𝑒1
and 𝑒2.
Deterministic Evaluation in the Middle Suppose that (𝑒2, 𝑌2) ⊑𝑉 ′ (𝑒3, 𝑌3) because there exists
some 𝑒′2 such that (𝑒2, 𝑌2) ↩→∗ (𝑒′2, 𝑌2) and (𝑒′2, 𝑌2) ⊑𝑉 ′ (𝑒3, 𝑌3). Because (𝑒1, 𝑌1) ⊑𝑉 (𝑒2, 𝑌2),
Lemma 11.9 gives us that there exists some 𝑒′1 such that (𝑒1, 𝑌1) ↩→∗ (𝑒′1, 𝑌1) and (𝑒′1, 𝑌1) ⊑𝑉 (𝑒′2, 𝑌2).
At this point, the inductive hypothesis lets us derive that (𝑒′1, 𝑌1) ⊑𝑉 ′′ (𝑒3, 𝑌3). Since (𝑒1, 𝑌1) ↩→∗
(𝑒′1, 𝑌1), it follows from ⊑-Eval now that (𝑒1, 𝑌1) ⊑𝑉 ′′ (𝑒3, 𝑌3).
Concretized Symbolic Variable on the Right Assume that (𝑒2, 𝑌2) ⊑𝑉 ′ (𝑒3, 𝑌3) because 𝑒3 is a
symbolic variable 𝑠3 that 𝑌3 maps to some 𝑒′3. In this case, we know that there exists some 𝑒′ =
lookup(𝑠3,𝑉 ′) and some other expression 𝑒′′ such that (𝑒′, 𝑌2) ↩→∗ (𝑒′′, 𝑌2), (𝑒2, 𝑌2) ⊑𝑉 ′ (𝑒′′, 𝑌3),
and (𝑒2, 𝑌2) ⊑𝑉 ′ (𝑒′3, 𝑌3). We want to find some expressions 𝑒′1 = lookup(𝑠3,𝑉 ′′) and 𝑒′′1 such that
(𝑒′1, 𝑌1) ↩→∗ (𝑒′′1 , 𝑌1), (𝑒1, 𝑌1) ⊑𝑉 ′′ (𝑒′′1 , 𝑌3), and (𝑒1, 𝑌1) ⊑𝑉 ′′ (𝑒′3, 𝑌3).
We already have a definition of 𝑒′1 from 𝑉 ′′: 𝑒′1 is 𝑒

′ with all of the symbolic variables from 𝑌2
inlined. Let 𝑒′′1 be 𝑒′′ with all of the symbolic variables from 𝑌2 inlined. We know that (𝑒′, 𝑌2) ↩→∗
(𝑒′′, 𝑌2), so it must be the case that (𝑒′1, {}) ↩→∗ (𝑒′′1 , {}). All of the symbolic variables that are used
in the evaluation from 𝑒′ to 𝑒′′ are inlined for 𝑒′1, so there is no need to use concretizations from the
symbolic store in the evaluation from 𝑒′1 to 𝑒

′′
1 . It follows that (𝑒′1, 𝑌1) ↩→∗ (𝑒′′1 , 𝑌1) because adding

unused concretizations to a state does not interfere with its evaluation.
Also, since (𝑒2, 𝑌2) ⊑𝑉 ′ (𝑒′′, 𝑌3), Corollary 11.2 gives us that (𝑒2, 𝑌2) ⊑𝑉 ′ (𝑒′′1 , 𝑌3) as well. We

can apply the inductive hypothesis to this to derive that (𝑒1, 𝑌1) ⊑𝑉 ′′ (𝑒′′1 , 𝑌3). Likewise, applying
the inductive hypothesis to (𝑒2, 𝑌2) ⊑𝑉 ′ (𝑒′3, 𝑌3) gives us that (𝑒1, 𝑌1) ⊑𝑉 ′′ (𝑒′3, 𝑌3). All of these
conclusions together allow us to apply ⊑-Sym1.
Non-Concretized Symbolic Variable on the Right Now assume that (𝑒2, 𝑌2) ⊑𝑉 ′ (𝑒3, 𝑌3) be-
cause 𝑒3 is a symbolic variable 𝑠3, 𝑠3 ∉ 𝑌3, and there exist some 𝑒′ = lookup(𝑠3,𝑉 ′) and 𝑒′′

such that (𝑒′, 𝑌2) ↩→∗ (𝑒′′, 𝑌2) and (𝑒2, 𝑌2) ⊑𝑉 ′ (𝑒′′, 𝑌3). We want to find some expressions
𝑒′1 = lookup(𝑠3,𝑉 ′′) and 𝑒′′1 such that (𝑒′1, 𝑌1) ↩→∗ (𝑒′′1 , 𝑌1) and (𝑒1, 𝑌1) ⊑𝑉 ′′ (𝑒′′1 , 𝑌3).
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We already have a definition of 𝑒′1 from 𝑉 ′′: 𝑒′1 is 𝑒
′ with all of the symbolic variables from 𝑌2

inlined. Let 𝑒′′1 be 𝑒′′ with all of the symbolic variables from 𝑌2 inlined. We know that (𝑒′, 𝑌2) ↩→∗
(𝑒′′, 𝑌2), so it must be the case that (𝑒′1, {}) ↩→∗ (𝑒′′1 , {}). All of the symbolic variables that are used
in the evaluation from 𝑒′ to 𝑒′′ are inlined for 𝑒′1, so there is no need to use concretizations from the
symbolic store in the evaluation from 𝑒′1 to 𝑒

′′
1 . It follows that (𝑒′1, 𝑌1) ↩→∗ (𝑒′′1 , 𝑌1) because adding

unused concretizations to a state does not interfere with its evaluation.
Also, since (𝑒2, 𝑌2) ⊑𝑉 ′ (𝑒′′, 𝑌3), Corollary 11.2 gives us that (𝑒2, 𝑌2) ⊑𝑉 ′ (𝑒′′1 , 𝑌3). We can apply

the inductive hypothesis to this to derive that (𝑒1, 𝑌1) ⊑𝑉 ′′ (𝑒′′1 , 𝑌3). This gives us everything that
we need to apply ⊑-Sym2.
Non-Symbolic Variables Now assume that (𝑒2, 𝑌2) ⊑𝑉 ′ (𝑒3, 𝑌3) because 𝑒2 = 𝑒3 = 𝑥 . Symbolic
variables cannot map to non-symbolic variables, and we covered ⊑-Eval for the approximation
between 𝑒1 and 𝑒2 already, so, in order for (𝑒1, 𝑌1) ⊑𝑉 (𝑒2, 𝑌2) to hold, it must be the case that
𝑒1 = 𝑥 as well. This lets us apply ⊑-Var to derive immediately that (𝑒1, 𝑌1) ⊑𝑉 ′′ (𝑒3, 𝑌3).
Lambda Expressions Suppose that (𝑒2, 𝑌2) ⊑𝑉 ′ (𝑒3, 𝑌3) because 𝑒2 = 𝜆𝑥2 . 𝑒

′
2, 𝑒3 = 𝜆𝑥3 . 𝑒

′
3,

and (𝑒′2 [𝑥 ′/𝑥2], 𝑌2) ⊑𝑉 ′ (𝑒′3 [𝑥 ′/𝑥3], 𝑌3) for some fresh variable 𝑥 ′. In this case, 𝑒1 must be a
lambda expression 𝜆𝑥1 . 𝑒

′
1 as well because we covered ⊑-Eval already. The fact that (𝑒1, 𝑌1) ⊑𝑉

(𝑒2, 𝑌2) implies that (𝑒′1 [𝑥/𝑥1], 𝑌1) ⊑𝑉 (𝑒′2 [𝑥/𝑥2], 𝑌2) for some other fresh variable 𝑥 . We can use
Lemma 11.4 to derive that (𝑒′2 [𝑥 ′/𝑥2] [𝑥/𝑥 ′], 𝑌2) ⊑𝑉 ′ (𝑒′3 [𝑥 ′/𝑥3] [𝑥/𝑥 ′], 𝑌3). We can simplify this
to (𝑒′2 [𝑥/𝑥2], 𝑌2) ⊑𝑉 ′ (𝑒′3 [𝑥/𝑥3], 𝑌3) because 𝑥 ′ is fresh and therefore cannot appear in 𝑒′2 or 𝑒

′
3.

Since we know now that (𝑒′1 [𝑥/𝑥1], 𝑌1) ⊑𝑉 (𝑒′2 [𝑥/𝑥2], 𝑌2) and (𝑒′2 [𝑥/𝑥2], 𝑌2) ⊑𝑉 ′ (𝑒′3 [𝑥/𝑥3], 𝑌3),
we can apply the inductive hypothesis to derive that (𝑒′1 [𝑥/𝑥1], 𝑌1) ⊑𝑉 ′′ (𝑒′3 [𝑥/𝑥3], 𝑌3). Then we
can apply ⊑-Lam to establish that (𝜆𝑥1 . 𝑒′1, 𝑌1) ⊑𝑉 ′′ (𝜆𝑥3 . 𝑒′3, 𝑌3), which was our goal.
Data Constructors Assume that (𝑒2, 𝑌2) ⊑𝑉 ′ (𝑒3, 𝑌3) because 𝑒2 = 𝑒3 = 𝐷 . Since we can ignore the
possibility that ⊑-Eval applies between 𝑒1 and 𝑒2, ⊑-DC must apply between 𝑒1 and 𝑒2. This means
that 𝑒1 = 𝐷 , so we can apply ⊑-DC to 𝑒1 and 𝑒3 to derive that (𝑒1, 𝑌1) ⊑𝑉 ′′ (𝑒3, 𝑌3).
Applications The next possibility to consider is that (𝑒2, 𝑌2) ⊑𝑉 ′ (𝑒3, 𝑌3) because 𝑒2 = 𝑒′2 𝑒

′′
2 ,

𝑒3 = 𝑒′3 𝑒
′′
3 , (𝑒′2, 𝑌2) ⊑𝑉 ′ (𝑒′3, 𝑌3), and (𝑒′′2 , 𝑌2) ⊑𝑉 ′ (𝑒′′3 , 𝑌3). 𝑒1 must be an application 𝑒′1 𝑒

′′
1 in

order for the approximation between 𝑒1 and 𝑒2 to hold, since the approximation between the
two does not use ⊑-Eval as the main rule. Our assumption that (𝑒1, 𝑌1) ⊑𝑉 (𝑒2, 𝑌2) implies that
(𝑒′1, 𝑌1) ⊑𝑉 (𝑒′2, 𝑌2) and (𝑒′′1 , 𝑌1) ⊑𝑉 (𝑒′′2 , 𝑌2). We can apply the inductive hypothesis twice over
now to derive that (𝑒′1, 𝑌1) ⊑𝑉 ′′ (𝑒′3, 𝑌3) and (𝑒′′1 , 𝑌1) ⊑𝑉 ′′ (𝑒′′3 , 𝑌3). Next, we can apply ⊑-App to
conclude from these that (𝑒1, 𝑌1) ⊑𝑉 ′′ (𝑒3, 𝑌3), which is what we wanted to show.
Case Expressions Now assume that (𝑒2, 𝑌2) ⊑𝑉 ′ (𝑒3, 𝑌3) because 𝑒2 = case 𝑒′2 of { ®𝑎2} and
𝑒3 = case 𝑒′3 of { ®𝑎3}, where (𝑒′2, 𝑌2) ⊑𝑉 ′ (𝑒′3, 𝑌3) and, for any (𝐷 ®𝑥2 → 𝑒𝑎2 ) ∈ 𝑎2, there exists some
(𝐷 ®𝑥3 → 𝑒𝑎3 ) ∈ 𝑎3 and a fresh variable vector ®𝑥 ′ such that (𝑒𝑎2 [ ®𝑥 ′/ ®𝑥2], 𝑌2) ⊑𝑉 ′ (𝑒𝑎3 [ ®𝑥 ′/®𝑥3], 𝑌3).
Recall that we can ignore ⊑-Eval for the approximation between 𝑒1 and 𝑒2. Since 𝑒2 approximates
𝑒1, it must be the case that 𝑒1 = case 𝑒′1 of { ®𝑎1}, that (𝑒′1, 𝑌1) ⊑𝑉 (𝑒′2, 𝑌2), and that, for any
(𝐷 ®𝑥1 → 𝑒𝑎1 ) ∈ 𝑎1, there exists some (𝐷 ®𝑥2 → 𝑒𝑎2 ) ∈ 𝑎2 and a fresh variable vector ®𝑥 such that
(𝑒𝑎1 [®𝑥/ ®𝑥1], 𝑌1) ⊑𝑉 (𝑒𝑎2 [®𝑥/®𝑥2], 𝑌2). Because (𝑒′1, 𝑌1) ⊑𝑉 (𝑒′2, 𝑌2) and (𝑒′2, 𝑌2) ⊑𝑉 ′ (𝑒′3, 𝑌3), we know
from the inductive hypothesis that (𝑒′1, 𝑌1) ⊑𝑉 ′′ (𝑒′3, 𝑌3).

Let (𝐷 ®𝑥1 → 𝑒𝑎1 ) be an alternative in 𝑎1. We know that there is an alternative (𝐷 ®𝑥2 → 𝑒𝑎2 ) from 𝑎2
such that (𝑒𝑎1 [®𝑥/ ®𝑥1], 𝑌1) ⊑𝑉 (𝑒𝑎2 [®𝑥/®𝑥2], 𝑌2), where ®𝑥 is fresh. For this same alternative, we also know
that there is an alternative (𝐷 ®𝑥3 → 𝑒𝑎3 ) ∈ 𝑎3 such that (𝑒𝑎2 [ ®𝑥 ′/ ®𝑥2], 𝑌2) ⊑𝑉 ′ (𝑒𝑎3 [ ®𝑥 ′/®𝑥3], 𝑌3), where
®𝑥 ′ is fresh. Because ®𝑥 ′ is fresh, Lemma 11.4 lets us rewrite this as (𝑒𝑎2 [®𝑥/ ®𝑥2], 𝑌2) ⊑𝑉 ′ (𝑒𝑎3 [®𝑥/®𝑥3], 𝑌3).
(Replacing ®𝑥2 or ®𝑥3 with ®𝑥 ′ and then replacing ®𝑥 ′ with ®𝑥 is equivalent to replacing ®𝑥2 or ®𝑥3 with ®𝑥
directly since ®𝑥 ′ does not appear in 𝑒𝑎2 or 𝑒𝑎3 .) At this point, we can apply the inductive hypothesis
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again. Chaining the two approximations together gives us that (𝑒𝑎1 [®𝑥/ ®𝑥1], 𝑌1) ⊑𝑉 ′′ (𝑒𝑎3 [®𝑥/®𝑥3], 𝑌3).
An approximation of this form must hold for any alternative in 𝑎1, so we know now that both of
the requirements for (case 𝑒′1 of { ®𝑎1}, 𝑌1) ⊑𝑉 ′′ (case 𝑒′3 of { ®𝑎3}, 𝑌3) hold.
Bottoms Now suppose that (𝑒2, 𝑌2) ⊑𝑉 ′ (𝑒3, 𝑌3) because 𝑒2 = 𝑒3 = ⊥𝐿 for some label 𝐿. Since
⊑-Eval is not used between 𝑒1 and 𝑒2, the only way that (𝑒1, 𝑌1) ⊑𝑉 (𝑒2, 𝑌2) can hold is for 𝑒1 to be
⊥𝐿 as well. This means that we can apply ⊑-Bt on 𝑒1 and 𝑒3 to derive that (𝑒1, 𝑌1) ⊑𝑉 ′′ (𝑒3, 𝑌3). □

Lemma 11.4 (⊑𝑉 substitution). Given expressions 𝑒1, 𝑒2, symbolic stores 𝑌1 and 𝑌2 involving some

variable 𝑥 , expressions 𝑒′1, 𝑒
′
2, and some𝑉 such that (𝑒1, 𝑌1) ⊑𝑉 (𝑒2, 𝑌2) and (𝑒′1, 𝑌1) ⊑𝑉 (𝑒′2, 𝑌2) then

(𝑒1 [𝑒′1 / 𝑥], 𝑌1) ⊑𝑉 (𝑒2 [𝑒′2 / 𝑥], 𝑌2).

Proof. Case analysis and induction on definition of ⊑𝑉 . □

Lemma 11.5. Suppose (𝑒1, 𝑌1) ⊑𝑉 (𝑒2, 𝑌2). For any 𝑒 and any 𝑠 that does not appear in 𝑒2, it is the
case that (𝑒1, 𝑌1) ⊑𝑉 {𝑠→𝑒 } (𝑒2, 𝑌2).

Proof. Case analysis and induction on definition of ⊑𝑉 . □

Lemma 11.6. If 𝑆1 ↩→ 𝑆2, and there exists some 𝑒 such that SWHNF(𝑒) and 𝑆1 ↩→∗ (𝑒, _), then
𝑆2 ̸⊑ 𝑆1.

Proof. Case analysis based on the expression in 𝑆1 and induction on ↩→ in the possible reductions.
The only tricky point is that a variable may reduce to itself. However, in this case, the state will
never reach SWHNF. □

Lemma 11.7. If (𝑒1, 𝑌1) ↩→∗ (𝑒𝑘 , 𝑌𝑘 ) in 𝑘 steps, then (𝑒1, 𝑌𝑘 ) ↩→∗ (𝑒𝑘 , 𝑌𝑘 ). Further, the next 𝑘 steps

in the reduction of (𝑒1, 𝑌𝑘 ) are deterministic.

Proof. Case analysis of the reduction rules. The only rule which may be applied nondeter-
ministically is FrDC, since a symbolic variable that is not mapped in 𝑌 may be replaced by any
constructor of the appropriate type. The reduction of (𝑒1, 𝑌𝑘 ) ↩→∗ (𝑒𝑘 , 𝑌𝑘 ) will proceed exactly as
the reduction of (𝑒1, 𝑌1) ↩→∗ (𝑒𝑘 , 𝑌𝑘 ) except that any applications of FrDC will be substituted for
applications of LkDC, which will return the constructor application inserted into 𝑌 by FrDC. □

Theorem 3.1 (Symbolic Execution Completeness). Let 𝑆1 and 𝑆2 be states such that 𝑆1 ⊑ 𝑆2. If

𝑆1 ↩→ 𝑆 ′1, then either 𝑆 ′1 ⊑ 𝑆2, or there exists 𝑆
′
2 such that 𝑆2 ↩→ 𝑆 ′2, and 𝑆

′
1 ⊑ 𝑆 ′2.

Proof. Consider a state 𝑆1 = (𝑒1, 𝑌1) and a state 𝑆2 = (𝑒2, 𝑌2) such that 𝑆1 ⊑ 𝑆2. We will show
that if 𝑆1 is reduced by a single application of ↩→, so that 𝑆1 ↩→ 𝑆 ′1, then either (1) 𝑆 ′1 ⊑ 𝑆2 or (2)
there exists a reduction 𝑆2 ↩→ 𝑆 ′2 such that 𝑆 ′1 ⊑ 𝑆 ′2.
Use of Induction In many cases, we rely on induction on the size of the expressions in states 𝑆1
and 𝑆2. This results in new values 𝑉 ′, 𝑒′1, 𝑒

′
2, 𝑌

′
1 , 𝑌

′
2 , which we must use in the application of ⊑ to

the larger expression. For most expressions, (𝑒′1, 𝑌 ′1 ) ⊑𝑉 ′ (𝑒′2, 𝑌 ′2 ) holding relies on the fact that the
only rule that requires modifying 𝑉 to add a variable is FrDC, which only results in mappings for
fresh variables being added to 𝑉 . Thus, Lemma 11.5 ensures that (𝑒′1, 𝑌1) ⊑𝑉 ′ (𝑒′2, 𝑌2) continues to
hold, except in the case where 𝑒′2 is or contains a symbolic variable. We will consider this special
case in the following, when discussing symbolic variables.

In one case, we also apply this theorem inductively on a usage of ⊑ on the right-hand side of the
definition of ⊑. To see why this is justified, notice that for 𝑆1 ⊑ 𝑆2 to hold, this case may be used
only a finite number of times (to a finite depth.) Thus, in the base case we have applied any other
piece of ⊑’s definition.
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Case Analysis We will now enumerate the cases in which 𝑆1 ⊑𝑉 𝑆2 holds, and justify the theorem
in each case.
Reduction on Left Suppose (𝑒1, 𝑌1) ⊑𝑉 (𝑒2, 𝑌2) holds because ∃𝑒′ .(𝑒1, 𝑌1) ↩→∗ (𝑒′, 𝑌1)∧ (𝑒′, 𝑌1) ⊑𝑉
(𝑒2, 𝑌2). There are two possibilities. First, suppose the number of reduction steps required to reduce
(𝑒1, 𝑌1) to (𝑒′, 𝑌1) is 0 (that is, 𝑒1 = 𝑒′.) In this case, (𝑒′, 𝑌1) ⊑𝑉 (𝑒2, 𝑌2) must because of some
other piece of the approximation definition, and we refer to the relevant piece of the proof to
justify the theorem. Otherwise, the reduction (𝑒1, 𝑌1) ↩→∗ (𝑒′, 𝑌1) must be deterministic, since
𝑌1 is not updated. Thus, when we reduce 𝑒1 to some 𝑒′1 (𝑒1 ↩→ 𝑒′1), it must be the case that
∃𝑒′′ .(𝑒′1, 𝑌1) ↩→∗ (𝑒′′, 𝑌1) ∧ (𝑒′′, 𝑌1) ⊑𝑉 (𝑒2, 𝑌2), and so (𝑒′1, 𝑌1) ⊑𝑉 (𝑒2, 𝑌2).
Symbolic Variables If 𝑒1 is a lone symbolic variable, it cannot be reduced, and so the theorem does
not apply. There are two cases involving a symbolic variable on the right-hand side in which 𝑒1 can
be reduced.
First, consider the possibility that (𝑒1, 𝑌1) ⊑𝑉 (𝑠, 𝑌2) and ∃𝑒 = lookup(𝑠, 𝑌2). By the definition

of ⊑𝑉 , it must be the case that ∃𝑒′ = lookup(𝑠,𝑉 ).(𝑒′, 𝑌1) ↩→∗ (𝑒1, 𝑌1) and (𝑒1, 𝑌1) ⊑𝑉 (𝑒, 𝑌1). 𝑒 is
in SWHNF, so it must be the case that (𝑒1, 𝑌1) either is already in SWHNF, or can be reduced to
SWHNF deterministically. In either case, let the SWHNF expression be 𝑒′1. It must hold that 𝑒′1 ⊑𝑉 𝑒 .
Suppose 𝑒1 ↩→ 𝑒𝑠1. Then (𝑒′, 𝑌1) ↩→∗ (𝑒𝑠1, 𝑌1). Further, evaluation of 𝑒1 must be deterministic, since
it can be reduced to SWHNF without adjusting 𝑌1. Thus, since (𝑒1, 𝑌1) ↩→∗ (𝑒′1, 𝑌1), it must also
be the case that (𝑒𝑠1, 𝑌1) ↩→∗ (𝑒′1, 𝑌1). (Note that 𝑒1 ≠ 𝑒′1, because 𝑒

′
1 must be in SWHNF so that

(𝑒′1, 𝑌1) ⊑𝑉 (𝑒, 𝑌2) and, to be reducible, 𝑒1 must not be in SWHNF.) Consequently, we know that
(𝑒𝑠1, 𝑌1) ⊑𝑉 (𝑠, 𝑌2).
Second, consider the possibility that (𝑒1, 𝑌1) ⊑𝑉 (𝑠, 𝑌2) and 𝑠 ∉ 𝑌2. By the definition of ⊑𝑉 , it

must be the case that ∃𝑒′ = lookup(𝑠,𝑉 ), 𝑒′′ .(𝑒′, 𝑌1) ↩→∗ (𝑒′′, 𝑌1), where (𝑒1, 𝑌1) ⊑𝑉 (𝑒′′, 𝑌2).
Suppose that 𝑒1 ↩→ 𝑒′1. By induction (as justified in the note Use of Induction, above), it must be
the case that (𝑒′, 𝑌1) ↩→∗ (𝑒′1, 𝑌1) and so (𝑒′1, 𝑌1) ⊑𝑉 (𝑠, 𝑌2).
Variables The only rule that can reduce a variable is Var, which looks up the variable’s definition.
The definition 𝑒 of a non-symbolic variable cannot contain symbolic variables, so the theorem holds
by induction over the structure of 𝑒 .
Application Suppose 𝑒2 = 𝑒12 𝑒

2
2 . By the definition of ⊑, 𝑒1 = 𝑒11 𝑒

2
1 and 𝑒

1
1 ⊑ 𝑒12 and 𝑒

2
1 ⊑ 𝑒22 . If 𝑒2 is

already in SWHNF, the theorem holds trivially. Thus, we consider the two possible ways 𝑒1 may be
reduced:
• If App is applied, then (𝑒12, 𝑌2) ↩→ (𝑒1

′
2 , 𝑌

′
2 ). The theorem holds by induction on 𝑒11 and 𝑒

1
2 .

• Now suppose the rule App𝜆 can be applied. Then 𝑒12 has the form 𝜆𝑥2 . 𝑒
𝑏
2 and 𝑒11 has the

form 𝜆𝑥1 . 𝑒
𝑏
1 , By the definition of ⊑𝑉 , (𝑒𝑏1 , 𝑌1) ⊑𝑉 (𝑒𝑏2 [𝑥1 / 𝑥2], 𝑌2). Then, by Lemma 11.4,

(𝑒𝑏1 [𝑒21 / 𝑥1], 𝑌1) ⊑𝑉 (𝑒𝑏2 [𝑒22 / 𝑥2], 𝑌2). Thus (𝑒𝑏1 [𝑒21 / 𝑥1], {}) ⊑𝑉 (𝑒𝑏2 [𝑒22 / 𝑥2], 𝑌2) and the
theorem is satisfied.

Cases Suppose 𝑒2 = case 𝑒𝑏2 of { ®𝑎2}. Then the expression on the left-hand side must have the form
𝑒1 = case 𝑒𝑏1 of { ®𝑎1}, where there exists some𝑉 such that (𝑒𝑏1 , 𝑌1) ⊑𝑉 (𝑒𝑏2 , 𝑌2) and ∀(𝐷 ®𝑥1 → 𝑒𝑎1 ) ∈
𝑎1.∃(𝐷 ®𝑥2 → 𝑒𝑎2 ) ∈ 𝑎2.(𝑒𝑎1 [®𝑥/®𝑥1], 𝑌1) ⊑𝑉 (𝑒𝑎2 [®𝑥/®𝑥2], 𝑌2), for fresh ®𝑥 . There are four rules that might
be applicable to reduce the right-hand side. CsEv and CsDC simply require an inductive argument
on the application of ↩→, so we focus on FrDC and LkDC.

First consider FrDC. We assume some 𝑠1 ∉ 𝑌1, where (case 𝑠1 of { ®𝑎1}, 𝑌1) ⊑𝑉 (case 𝑠2 of { ®𝑎2}, 𝑌2).
Suppose 𝑠2 ∈ 𝑌2. Then, 𝑠2 must be mapped to some 𝐷 𝑒𝑎1 . . . 𝑒

𝑎
𝑘
, and by the definition of ⊑, it must be

that there exists some 𝑒′ that deterministically reduces to both 𝑠1 and 𝐷 𝑒𝑎1 . . . 𝑒
𝑎
𝑘
. This contradicts

the fact that 𝑠1 ∉ 𝑌1, so 𝑠2 ∉ 𝑌2. Thus, it is easy to see from the definition of ⊑ that if FrDC is used to
reduce the left-hand state, it can be applied to the right-hand state to instantiate 𝑠2 with the same
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constructor and preserve the approximation. A new 𝑉 ′ must be constructed, which maps the fresh
variables in the right-hand state to the corresponding fresh variables in the left-hand state.

Now consider LkDC. We assume there exists some 𝑒 = 𝐷 𝑠𝑎1 . . . 𝑠
𝑎
𝑘

= lookup(𝑠1, 𝑌1), where
(case 𝑠1 of { ®𝑎1}, 𝑌1) ⊑𝑉 (case 𝑒2 of { ®𝑎2}, 𝑌2). By the definition of ⊑, it must be the case that
𝑠1 ⊑𝑉 𝑒2. The definition of ⊑ also gives us that 𝑒2 must either be a symbolic variable or a data
constructor application. There are three possible ways we will preserve the mapping, depending
on the right-hand state:
• First, suppose 𝑒2 is a symbolic variable, with no mapping in 𝑌2. In this case, FrDC can be
applied to pick the same constructor as 𝑒 has (or, if 𝑒 is ⊥, BtDC can be applied.) A new
𝑉 ′ must be constructed, which maps the symbolic variables introduced by the rule to the
corresponding arguments of 𝑒 .
Our use of induction and the possibility of 𝑠 appearing at multiple places in 𝑒2 require
that we justify that, for all 𝑒 , assuming (𝑒, 𝑌1) ⊑ (𝑠, 𝑌2) held when 𝑠 ∉ 𝑌2, then (𝑒, 𝑌 ′1 ) ⊑
(𝑠, 𝑌2{𝑠 → 𝐷 𝑠1 . . . 𝑠𝑛}) still holds after an application of FrDC or BtDC on the right-hand side
of the expression. By the definition of ⊑, we know that there exists 𝑒′ = lookup(𝑠,𝑉 ) and
(𝑒′, 𝑌1) ↩→∗ (𝑒, 𝑌1). In order for FrDC (or BtDC) to be applied on the right-hand side to map 𝑠
to𝐷𝑠1 . . . 𝑠𝑛 (or⊥), it must hold that, in the scrutinee of the case statement, (𝑒𝑐 , 𝑌1) ⊑𝑉 (𝑠, 𝑌2)
is being checked. Thus, it must also be the case that (𝑒′, 𝑌1) ↩→∗ (𝑒𝑐 , 𝑌1) and that (𝑒𝑐 , 𝑌1) ↩→∗
(𝑒′𝑐 , 𝑌1), where (𝑒′𝑐 , 𝑌1) ⊑𝑉 (𝐷 𝑠1 . . . 𝑠𝑛, 𝑌2) (or, in the case of BtDC, that (𝑒′𝑐 , 𝑌1) ⊑𝑉 (⊥, 𝑌2).)
By Lemma 11.7, it is then the case that there is only one possible reduction sequence for
(𝑒, 𝑌1), specifically (𝑒, 𝑌1) ↩→∗ (𝑒𝑐 , 𝑌1) ↩→ (𝑒′𝑐 , 𝑌 ′1 ). Thus, (𝑒, 𝑌 ′1 ) ⊑ (𝑠, 𝑌2{𝑠 → 𝐷 𝑠1 . . . 𝑠𝑛})
holds (or, a similar approximation holds in the case of an application of BtDC.)
• Now suppose 𝑒2 is a symbolic variable that𝑌2 maps to 𝑒′ = 𝐷𝑠𝑎

′
1 . . . 𝑠𝑎

′

𝑘
. By the definition of ⊑, it

must be that 𝑒 ⊑𝑉 𝑒’. Thus, also by the definition of ⊑, we know that𝐷𝑠𝑎1 . . . 𝑠
𝑎
𝑘
⊑𝑉 𝐷𝑠𝑎

′
1 . . . 𝑠𝑎

′

𝑘
,

and thus ∀1 ≤ 𝑖 ≤ 𝑘.𝑠𝑎𝑖 ⊑𝑉 𝑠𝑎
′

1 . Then, we can apply LkDC on the right-hand side as well, and
it is clear the the approximation continues to hold on the reduced states, using the same 𝑉 .
• Finally, suppose 𝑒2 is a data constructor application itself. Again, it is clear that we can apply

LkDC on the right-hand side, and it is clear that the approximation continues to hold on the
reduced states, using the same 𝑉 .

Thus, the theorem is satisfied.
Lambdas, Constructors, Bottom Lambdas, data constructors, and bottoms are already in SWHNF,
so they cannot be reduced. Thus, the theorem holds trivially in these cases. □

Corollary 11.8. If 𝑆1 can be reduced to 𝑆2 in 𝑘 steps, and there is some 𝑆 ′1 such that 𝑆1 ⊑ 𝑆 ′1, then
there is some 𝑆 ′2 such that 𝑆 ′1 can be reduced to 𝑆 ′2 in 𝑘

′
steps, where 𝑘 ′ ≤ 𝑘 .

Lemma 11.9 (Symbolic Execution Determinism). Let 𝑆1 = (𝑒1, 𝑌1) and 𝑆2 = (𝑒1, 𝑌2) be states
such that 𝑆1 ⊑𝑉 𝑆2. If 𝑆2 ↩→ 𝑆 ′2 where 𝑆

′
2 = (𝑒′2, 𝑌2), then there exists 𝑆 ′1 = (𝑒′1, 𝑌1) such that 𝑆1 ↩→∗ 𝑆 ′1

and 𝑆 ′1 ⊑𝑉 𝑆 ′2.

Proof. We proceed by case analysis on the expression 𝑒2.
Variable If (𝑥, 𝑌1) ⊑𝑉 (𝑥, 𝑌2), both sides can only be reduced by Var. Thus, the theorem trivially
holds.
Application If (𝑒11 𝑒21, 𝑌1) ⊑𝑉 (𝑒12 𝑒22, 𝑌2), reduction may proceed on the right by App or App𝜆. In
either case, the same rule must be applicable on the left, preserving the approximation by induction
on the size of the expression.
Case Suppose (case 𝑒𝑏1 of { ®𝑎1}, 𝑌1) ⊑𝑉 (case 𝑒𝑏2 of { ®𝑎2}, 𝑌2). If the rule CsEv or CsDC is applicable
on the right-hand side. the same rule must be applicable on the left-hand side, and the lemma
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holds by induction on the size of the expression. FrDC cannot be applied on the right-hand side,
because it is nondeterministic. If LkDC is applicable on the right-hand side, then 𝑒𝑏2 is some 𝑠2, such
that there is an 𝑒 = lookup(𝑠2, 𝑌2). By the definition of ⊑, (𝑒𝑏1 , 𝑌1) ⊑𝑉 (𝑒, 𝑌2). It must be the case
that (𝑒𝑏1 , 𝑌1) ↩→∗ (𝑒𝑏

′
1 , 𝑌1) such that ((𝑒𝑏′1 , 𝑌1), 𝑌1) ⊑𝑉 (𝑒, 𝑌2). Thus, both states may continue

evaluation along corresponding alternative expressions, preserving the approximation.
Symbolic Variables, Lambdas, Constructors, Bottom Symbolic variables, lambdas, data con-
structors, and bottoms are already in SWHNF, so they cannot be reduced deterministically. The
theorem holds trivially in these cases.

□

11.5 ⊑ and Reduction Sequence Lemmas and Theorems
A finite reduction sequence 𝑆↩→ = 𝑆1, . . . 𝑆𝑘 is a sequence of states such that ∀𝑖, 1 ≤ 𝑖 < 𝑘.𝑆𝑖 ↩→ 𝑆𝑖 + 1.
Similarly, an infinite reduction sequence 𝑆↩→ = 𝑆1, . . . is an infinite sequence of states such that
∀𝑖, 1 ≤ 𝑖 .𝑆𝑖 ↩→ 𝑆𝑖 + 1. We use the term reduction sequence when the distinction between a finite
and infinite reduction sequence is not significant. By convention, given a reduction sequence 𝑆_↩→,
we write 𝑆_

𝑖
to refer to the 𝑖𝑡ℎ state in the sequence. We write 𝑒_

𝑖
and 𝑌 _

𝑖
to refer to the expression

and symbolic store of the 𝑖𝑡ℎ state in the sequence. A complete reduction sequence is a reduction
sequence that is either infinite or that is finite, and in which the final state has an expression in
SWHNF form. A non-approximating reduction sequence is a reduction sequence in which no state is
approximated by a past state, that is ∀𝑖 < 𝑗 .𝑆 𝑗 ̸⊑ 𝑆𝑖 .
A paired reduction sequence is a sequence of two expresssions and a symbolic store, 𝑆↩→ =

(𝑒11, 𝑒21, 𝑌1), . . . , (𝑒1𝑘 , 𝑒
2
𝑘
, 𝑌𝑘 ), ... such that

∀𝑖, 1 ≤ 𝑖 .((𝑒1𝑖 , 𝑌𝑖 ) ↩→ (𝑒1𝑖+1, 𝑌𝑖+1) ∧ 𝑒2𝑖 = 𝑒2𝑖+1)
∨((𝑒2𝑖 , 𝑌𝑖 ) ↩→ (𝑒2𝑖+1, 𝑌𝑖+1) ∧ 𝑒1𝑖 = 𝑒1𝑖+1)

Reduction Sequences and Approximation To establish the soundness of coinduction, we rely on
the following lemma, which relates reduction sequences and approximation:

Lemma 11.10. Let 𝑝 be a predicate on states such that 𝑆1 ⊑ 𝑆2 ∧ 𝑝 (𝑆1) =⇒ 𝑝 (𝑆2). If there exists a
reduction sequence 𝑆↩→ = 𝑆1, . . . , 𝑆𝑛 and 𝑝 (𝑆𝑛), then there exists some non-approximating reduction

sequence 𝑆 ′↩→ = 𝑆 ′1, 𝑆
′
2, . . . , 𝑆

′
𝑛′ , where 𝑆

′
1 = 𝑆1 and 𝑝 (𝑆 ′𝑛′ ).

Proof. We proceed by induction on the length 𝑛 of the reduction sequence 𝑆↩→.
Base Case - n = 2 By Lemma 11.6.
Inductive Step - Assume for 𝑛 ≤ 𝑘 , Show for 𝑛 = 𝑘 + 1 If, for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 + 1, it is the case
that 𝑆 𝑗 ̸⊑ 𝑆𝑖 , then we are done. Otherwise, let 𝑖 and j be two indices such that 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 + 1 and
𝑆 𝑗 ⊑ 𝑆𝑖 . 𝑆 𝑗 reduces to 𝑆𝑘+1 in 𝑘 + 1− 𝑗 steps. Then, by Corollary 11.8, 𝑆𝑖 can be reduced to some state
𝑆 ′
𝑘+1 = (𝑒

′
𝑘+1, 𝑌

′
𝑘+1), such that 𝑆𝑘+1 ⊑ 𝑆 ′

𝑘+1, in at most 𝑘 + 1 − 𝑗 steps. Since 𝑆𝑘+1 ⊑ 𝑆 ′
𝑘+1 ∧ 𝑝 (𝑆𝑘+1), it

must also be the case that 𝑝 (𝑆 ′
𝑘+1) holds. Since 𝑆1 can be reduced to 𝑆𝑖 in 𝑖 − 1 steps and 𝑆𝑖 can be

reduced to 𝑆 ′
𝑘+1 in 𝑘 +1− 𝑗 steps, 𝑆1 can be reduced to 𝑆 ′

𝑘+1 in 𝑖−1+𝑘 +1− 𝑗 +1 steps (where the extra
“+1” comes from the reduction between states 𝑆𝑖 and 𝑆 𝑗 ). Since 𝑖−1+𝑘 +1− 𝑗 +1 = 𝑘 +1− ( 𝑗 −𝑖) ≤ 𝑘 ,
this lemma follows from the inductive hypothesis. □

Corollary 11.11. If there exists a reduction sequence 𝑆↩→ = 𝑆1, . . . , 𝑆𝑛 = (𝑒𝑛, 𝑌𝑛) and SWHNF(𝑒𝑛),
then there exists some non-approximating reduction sequence 𝑆 ′↩→ = 𝑆 ′1 = 𝑆1, 𝑆

′
2, . . . , 𝑆

′
𝑛′ = (𝑒𝑛′ , 𝑌𝑛′ ),

where SWHNF(𝑒𝑛′ ).
Corollary 11.12. If there exists a reduction sequence 𝑆↩→ = 𝑆1, . . . , 𝑆𝑛 and 𝑆𝐴 ⊑ 𝑆𝑛 , then there

exists some non-approximating reduction sequence 𝑆 ′↩→ = 𝑆 ′1 = 𝑆1, 𝑆
′
2, . . . , 𝑆

′
𝑛′ , where 𝑆𝐴 ⊑ 𝑆𝑛′ .
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Proof. Consider Lemma 11.10 with 𝑝 (𝑆) = 𝑆𝐴 ⊑ 𝑆 , which satisfies 𝑆1 ⊑ 𝑆2 ∧ 𝑝 (𝑆1) =⇒ 𝑝 (𝑆2)
by the transitivity of ⊑ (Lemma 11.3.) □

Lemma 11.13. Let 𝑝 be a predicate on states such that 𝑆1 ⊑ 𝑆2 ∧ 𝑝 (𝑆1) =⇒ 𝑝 (𝑆2). Let 𝑆↩→ =

𝑆1, . . . , 𝑆𝑛 be a non-approximating reduction sequence which calls 𝑓 a minimal number of times

while satisfying 𝑝 (𝑒𝑛). Let 𝑆𝐿1 = (𝑒𝐿1 , 𝑌𝐿
1 ) and 𝑆𝐿2 = (𝑒𝐿2 , 𝑌𝐿

1 ) be states such that 𝑆𝐿1 ≡ 𝑆𝐿2 . Pick

𝑘 such that 𝑒𝑘 = 𝑓 𝑒1
𝑘
. . . 𝑒𝑡

𝑘
(𝑒𝑘 is in function application form), 𝑓 ∉ 𝑒𝐿1 , and for some 𝑉 we have

∃𝑒′
𝑘
∈ 𝑒𝑘 .(𝑒′𝑘 , 𝑌𝑘 ) ⊑𝑉 (𝑒

𝐿
1 , 𝑌

𝐿
1 ). Let 𝑆 ′𝑘 = 𝑒𝑘 [(𝑒𝐿2 [𝑉 (𝑠) / 𝑠]) / 𝑒′𝑘 ]. Then there exists some reduction

sequences 𝑆 ′↩→ = 𝑆 ′
𝑘
. . . 𝑆 ′𝑚 such that 𝑝 (𝑆 ′𝑚) and ∀1 ≤ 𝑖 ≤ 𝑘, 𝑘 ≤ 𝑗 ≤ 𝑚.𝑆 ′𝑗 ̸⊑ 𝑆𝑖 .

Proof. The existence of 𝑆 ′↩→ = 𝑆 ′
𝑘
. . . 𝑆 ′𝑚 such that 𝑝 (𝑆 ′𝑚) is satisfied is straightforward, since all

we have done is substitute one subexpression for an equivalent subexpression.
Suppose that in reduction sequence 𝑆↩→, the function 𝑓 is called 𝑥 times before state 𝑘 , and 𝑦

times after state 𝑘 . Thus, it is called 𝑥 + 𝑦 + 1 times in total (the 1 extra time being at state 𝑘 itself).
Since (𝑒𝐿2 [𝑉 (𝑠) / 𝑠]) does not contain 𝑓 , there must be reduction of 𝑆 ′

𝑘+1 to 𝑆
′
𝑚 which calls 𝑓 exactly

𝑦 times. Now suppose there exist 𝑖 and 𝑘 such that 1 ≤ 𝑖 ≤ 𝑘, 𝑘 ≤ 𝑗 ≤ 𝑚 and 𝑆 ′𝑗 ⊑ 𝑆𝑖 . 𝑆 ′𝑗 must be
reducible to 𝑆 ′𝑚 calling 𝑓 at most 𝑦 times. Then, by Lemma 11.10, 𝑆𝑖 must also be able to be reduced
to satisfy 𝑝 calling 𝑓 at most 𝑦 times, which contradicts our assumption that 𝑆↩→ calls 𝑓 a minimal
number of times. Thus, it must be that for all 1 ≤ 𝑖 ≤ 𝑘, 𝑘 ≤ 𝑗 ≤ 𝑚 we have 𝑆 ′𝑗 ̸⊑ 𝑆𝑖 .

□

Lemma 11.14. Consider a finite paired reduction sequence 𝑆↩→ = (𝑒11, 𝑒21, 𝑌1) . . . (𝑒1𝑘 , 𝑒
2
𝑘
, 𝑌𝑘 ). There

exists a paired reduction sequence 𝑆 ′↩→: 𝑆
′
↩→ = (𝑒1′1 , 𝑒2

′
1 , 𝑌

′
1 ) . . . (𝑒1

′

𝑘
, 𝑒2

′

𝑘
, 𝑌 ′

𝑘
) with the same initial and

final expressions, but such that all reductions of the first expression are completed before any reductions

of the second expression. That is, 𝑒1
′

1 = 𝑒11 , 𝑒
2′
1 = 𝑒21 , 𝑒

1′
𝑘
= 𝑒1

𝑘
, 𝑒2

′

𝑘
= 𝑒2

𝑘
, and there exists some 𝑏 such that

∀1 ≤ 𝑖 ≤ 𝑏.𝑒2
′

𝑏
= 𝑒2

′

𝑏+1 and ∀𝑏 < 𝑖 ≤ 𝑘.𝑒1
′

𝑏
= 𝑒1

′

𝑏+1.

Proof. Follows from reasoning similar to that required for Lemma 11.7.
The only rules which may cause any sort of interaction between the evaluation of 𝑒1 and 𝑒2 are

FrDC, BtDC, and LkDC, which set and lookup variables in the same symbolic store. Thus, any two
neighboring reductions in which 𝑒2 is reduced first and 𝑒1 is reduced second may be swapped. The
only catch is that that if FrDC or BtDC is being applied to a variable 𝑠 in 𝑒2 and LkDC is being applied
to that same variable in 𝑒1, then the rules being applied to each state must also be swapped. That is,
the application of FrDC or BtDC on 𝑒2 will become an application of LkDC, and the application of
LkDC on 𝑒1 will become an application of FrDC or BtDC. □

Lemma 11.15. Consider an infinite paired reduction sequence 𝑆↩→ = (𝑒11, 𝑒21, 𝑌1) . . . (𝑒1𝑘 , 𝑒
2
𝑘
, 𝑌𝑘 ),

such that the evaluation of 𝑒11 (resp. 𝑒21) eventually reaches SWHNF. That is, there exists some 𝑏

such that ∀𝑏 < 𝑖 ≤ 𝑘.𝑒1
𝑏
= 𝑒1

𝑏+1. Then there exists an infinite paired reduction sequence 𝑆 ′↩→: 𝑆
′
↩→ =

(𝑒1′1 , 𝑒2
′

1 , 𝑌
′
1 ) . . . (𝑒1

′

𝑘
, 𝑒2

′

𝑘
, 𝑌 ′

𝑘
) with the same initial expression, but such that all reductions of the first

expression are completed before any reductions of the second expression. That is, 𝑒1
′

1 = 𝑒11 , 𝑒
2′
1 = 𝑒21 , and

there exists some 𝑏′ such that ∀1 ≤ 𝑖 ≤ 𝑏′ .𝑒2
′

𝑏′ = 𝑒2
′

𝑏′+1 and ∀𝑏
′ < 𝑖 ≤ 𝑘.𝑒1

′

𝑏′ = 𝑒1
′

𝑏′+1.

Proof. Follows from the same basic argument as Lemma 11.14. □

Lemma 11.10 can be extended to apply to paired reduction sequences, even with the choice of
predicate differing between the first and second state:

Lemma 11.16. Let 𝑝 and 𝑞 be predicates on states such that 𝑆1 ⊑ 𝑆2 ∧ 𝑝 (𝑆1) =⇒ 𝑝 (𝑆2) and 𝑆1 ⊑
𝑆2 ∧ 𝑞(𝑆1) =⇒ 𝑞(𝑆2). If there exists a (possibly infinite) paired reduction sequence 𝑆↩→ = 𝑆1, . . . , 𝑆𝑛 ,

where 𝑆𝑛 = (𝑒1𝑛, 𝑒2𝑛, 𝑌𝑛) and 𝑝 ((𝑒1𝑛, 𝑌𝑛)) and 𝑞((𝑒2𝑛, 𝑌𝑛)), then there exists some (possibly infinite)
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paired reduction sequence 𝑆 ′↩→ = 𝑆 ′1, 𝑆
′
2, . . . , 𝑆

′
𝑛′ with 𝑆

′
1 = 𝑆1, where 𝑝 ((𝑒′1𝑛, 𝑌 ′𝑛)) and 𝑞((𝑒′2𝑛, 𝑌 ′𝑛)), and

such that, for all 1 < 𝑖 < 𝑗 ≤ 𝑛′, it is the case that

𝑒1𝑖−1 ↩→ 𝑒1𝑖 =⇒ (𝑒1𝑗
′
, 𝑌 ′𝑗 ) ̸⊑ (𝑒1𝑖

′
, 𝑌 ′𝑖 )

and

𝑒2𝑖−1 ↩→ 𝑒2𝑖 =⇒ (𝑒2𝑗
′
, 𝑌 ′𝑗 ) ̸⊑ (𝑒2𝑖

′
, 𝑌 ′𝑖 ).

Proof. By Lemma 11.14, 𝑆↩→ can be reordered into a paired reduction sequence that first performs
all reductions on 𝑒1 until it reaches state 𝑛, and then only performs reductions on 𝑒2 afterward. By
Lemma 11.10, we can then reduce both reductions individually to ensure this lemma holds. Note,
importantly, that the construction in Lemma 11.10 never requires changing the constructor (or
assignment to bottom) for an expression’s concretization. Consequently, the only impact that these
two individual changes to reductions might have on each other is that, if an application of FrDC is
removed from 𝑒1, a corresponding LkDC applied to 𝑒2 may need to be changed to a FrDC. □

Corollary 11.17. If there exists a paired reduction sequence 𝑆↩→ = 𝑆1, . . . , 𝑆𝑛 where 𝑆𝑛 = (𝑒1𝑛, 𝑒2𝑛, 𝑌𝑛)
and 𝑆𝐴 ⊑ (𝑒1𝑛, 𝑌𝑛) (resp. 𝑆𝐴 ⊑ (𝑒2𝑛, 𝑌𝑛)), then there exists some (possibly infinite) paired reduction

sequence 𝑆 ′↩→ = 𝑆 ′1 = 𝑆1, 𝑆
′
2, . . . , 𝑆

′
𝑛′ , where 𝑆𝐴 ⊑ (𝑒1𝑛′ , 𝑌𝑛′ ) (resp. 𝑆𝐴 ⊑ (𝑒2𝑛′ , 𝑌𝑛′ )), such that for all

1 ≤ 𝑖 < 𝑗 ≤ 𝑛′ it is the case that

𝑒1𝑖−1 ↩→ 𝑒1𝑖 =⇒ (𝑒1𝑗
′
, 𝑌 ′𝑗 ) ̸⊑ (𝑒1𝑖

′
, 𝑌 ′𝑖 )

and

𝑒2𝑖−1 ↩→ 𝑒2𝑖 =⇒ (𝑒2𝑗
′
, 𝑌 ′𝑗 ) ̸⊑ (𝑒2𝑖

′
, 𝑌 ′𝑖 ).

Lemma 11.18. Lemma 11.13 can be applied to the reduction of both the first and second state in a

(possibly infinite) reduction sequence.

Proof. The proof follows from the proof of Lemmas 11.13 and 11.15, and resembles the proof
of 11.16. □

11.6 Equivalence Checking Rule Proofs
Theorem 11.19 (Soundness of our proof system). The syntactic equality rule (Syn-Eq-Equiv),

the SWHNF equivalence rules (DC-Equiv and Lam-Equiv), the reduction rules (Red-L and Red-R), the

coinduction rules (RAdd and U-Coind and G-Coind), and the lemma rules (LemmaLeft, LemmaRight,

and LemmaOver) are sound when used in a productive proof tree.

Proof. Consider a proof tree with a root of {}, 𝑌 , 𝑒1 ≡ 𝑒2. Soundness of the syntactic equality
rule, the SWHNF equivalence rules, and the reduction rules is straightforward to prove, so we focus
on the coinduction and lemma rules.
We consider branches beginning at the root of the proof tree, and ending with U-Coind, G-Coind,

or LemmaOver.

Ending with U-Coind

Consider a branch ending at a leaf that is discharged with U-Coind:

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 177. Publication date: October 2022.



Checking Equivalence in a Non-strict Language 177:39

RAdd

¬SWHNF(𝑒𝑃1 )
¬SWHNF(𝑒𝑃2 )

U-Coind

∃(𝑒𝑃1 , 𝑒𝑃2 , 𝑌 𝑃 ) ∈ 𝑅,𝑉 .

(𝑒𝐶1 , 𝑌𝐶 ) ⊑𝑉 (𝑒𝑃1 , 𝑌 𝑃 )
∧(𝑒𝐶2 , 𝑌𝐶 ) ⊑𝑉 (𝑒𝑃2 , 𝑌 𝑃 )

𝑅 ∪ (𝑆𝐶1 , 𝑆𝐶2 ), 𝑌𝐶 , 𝑒𝐶1 ≡ 𝑒𝐶2

...

𝑅 ∪ (𝑒𝑃1 , 𝑒𝑃2 , 𝑌 𝑃 ), 𝑌 𝑃 , 𝑒𝑃1 ≡ 𝑒𝑃2

𝑅, 𝑌, 𝑒𝑃1 ≡ 𝑒𝑃2

...

{}, 𝑌 , 𝑒1 ≡ 𝑒2
Note that, since the proof tree is productive, there must be at least one application of each of

Red-L and Red-R between RAdd and U-Coind.
Suppose that there is, in fact, some reduction of (𝑒𝐶1 , 𝑒𝐶2 , 𝑌 ) that demonstrates that 𝑒𝐶1 . 𝑒𝐶2 .

Then, by the completeness of symbolic execution (Theorem 3.1), there exists some reduction of
(𝑒𝑃1 , 𝑒𝑃2 , 𝑌 ) that demonstrates that 𝑒𝑃1 . 𝑒𝑃2 . Since 𝑒

𝑃
1 . 𝑒𝑃2 , it must be that there exists a reduction

of (𝑒𝑃1 , 𝑒𝑃2 , 𝑌 ) where one of the expressions reaches SWHNF and the other never does, or where
both expressions reach non-equivalent SWHNF expressions. We consider each case:

• Only one expression terminates Without loss of generality, suppose that 𝑒𝑃1 reaches a
SWHNF expression 𝑒𝐹1 and that 𝑒𝑃2 does not terminate. Letting 𝑝 (𝑆) = SWHNF(𝑆) and 𝑞(𝑆) =
𝑇𝑟𝑢𝑒 , if no lemma is applied in the proof tree, Lemma 11.16 tells us that there exists a reduction
sequence 𝑆 ′↩→ which reduces 𝑒𝑃1 to some SWHNF expression such that

∀𝑖 .𝑒1′𝑖−1 ↩→ 𝑒1
′

𝑖 =⇒ (𝑒1′𝑗 , 𝑌 ′𝑗 ) ̸⊑ (𝑒1
′

𝑖 , 𝑌
′
𝑖 ). (1)

If a lemma is applied by LemmaLeft or LemmaRight in a proof tree, it must be applied to some
expression 𝑓 𝑒 . . . 𝑒 in function application form. Lemma 11.18 tells us that is true even in
the case of such a lemma application, along the branch of the proof tree corresponding to a
minimal number of 𝑓 applications. In either the case with or without lemmas, the relevant
reduction sequence must correspond to some branch of the proof tree, and along it, we will
never be able to apply U-Coind to discharge the state. Thus, we will not be able to form a
finite proof tree, and our rules are sound in this case.
• Both expressions terminate Now suppose that 𝑒𝑃1 reduces to a SWHNF expression 𝑒𝐹1 ,
that 𝑒𝑃2 reduces to a SWHNF expression 𝑒𝐹2 , and that 𝑒𝐹1 . 𝑒𝐹2 . 𝑒

𝐹
1 and 𝑒𝐹2 must be data

constructor applications, lambda expressions, or bottoms. Similarly to the previous case,
letting 𝑝 (𝑆) = 𝑆 ⊑ 𝑒𝐹1 and 𝑞(𝑆) = 𝑆 ⊑ 𝑒𝐹2 allows us to use Corollary 11.12 to guarantee that
there exists a reduction sequence 𝑆 ′↩→ which reduces 𝑒𝑃1 and 𝑒𝑃2 to SWHNF expressions that
approximate 𝑒𝐹1 and 𝑒𝐹2 , respectively, such that

∀𝑖 .𝑒1′𝑖−1 ↩→ 𝑒1
′

𝑖 =⇒ (𝑒1′𝑗 , 𝑌 ′𝑗 ) ̸⊑ (𝑒1
′

𝑖 , 𝑌
′
𝑖 )

and
∀𝑖 .𝑒2′𝑖−1 ↩→ 𝑒2

′
𝑖 =⇒ (𝑒2′𝑗 , 𝑌 ′𝑗 ) ̸⊑ (𝑒2

′
𝑖 , 𝑌

′
𝑖 ).

Similarly to the case in which only one expression terminates, Lemma 11.18 tells us that
this is true along some reduction sequence in the proof tree even if a lemma is applied with
LemmaLeft or LemmaRight.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 177. Publication date: October 2022.



177:40 John C. Kolesar, Ruzica Piskac, and William T. Hallahan

We subdivide further to consider each of the three possible ways that the expressions could
reach SWHNF:
– 𝑒𝐹1 and 𝑒𝐹2 are data constructor applications If the data constructors being applied are
different, the proof tree will not be able to be completed, and we will not be able to prove
the equivalence of 𝑒𝐹1 and 𝑒𝐹2 soundly. If the data constructors are the same, DC-Eqiv must
be applied to check the equivalence of each corresponding argument between 𝑒𝐹1 and 𝑒𝐹2 .
We can see then, by an inductive argument on the size of the proof tree, that the proof for
one of the corresponding argument pairs must fail.

– 𝑒𝐹1 and 𝑒𝐹2 are lambda expressions We proceed with Lam-Eqiv, which checks the equiv-
alence of both lambda expressions applied to the same fresh symbolic literal. Again, by
an inductive argument on the size of the proof tree, the proof of the equivalence of these
applications will fail.

– 𝑒𝐹1 and 𝑒𝐹2 are labeled bottoms If the labels are different, we will not be able to apply
Bot-Eqiv to complete the proof tree.

Ending with G-Coind

Now consider a proof tree with a root of ({}, 𝑌 , 𝑒1 ≡ 𝑒2), with a branch that ends with G-Coind:

RAdd

G-Coind

∃(𝑒𝑃1 , 𝑒𝑃2 , 𝑌 𝑃 ) ∈ 𝑅,𝑉 .

(𝑒𝐶1 , 𝑌𝐶 ) ⊑𝑉 (𝑒𝑃1 , 𝑌 𝑃 )
∧(𝑒𝐶2 , 𝑌𝐶 ) ⊑𝑉 (𝑒𝑃2 , 𝑌 𝑃 )

𝑅 ∪ (𝑆𝐶1 , 𝑆𝐶2 ), 𝑌𝐶 , 𝑒𝐶1 ≡ 𝑒𝐶2

...

𝑅 ∪ (𝑒𝑃1 , 𝑒𝑃2 , 𝑌 𝑃 ), 𝑌 𝑃 , 𝑒𝑃1 ≡ 𝑒𝑃2

𝑅, 𝑌, 𝑒𝑃1 ≡ 𝑒𝑃2

...

{}, 𝑌 , 𝑒1 ≡ 𝑒2
Note that, if there is at least one application each of Red-L and Red-R between the applications of

RAdd and G-Coind, we could have applied U-Coind instead, and soundness follows by the same
argument. Thus, assume there is no application of Red-L (without loss of generality; we could
assume instead that there is no application of Red-R) between RAdd and G-Coind. To satisfy the
productivity requirement, there must have been an application of either DC-Eqiv or Lam-Eqiv.
This means that 𝑒𝑃1 is already in SWHNF.

Suppose that there is, in fact, some reduction of (𝑒𝐶1 , 𝑒𝐶2 , 𝑌 ) that demonstrates that 𝑒𝐶1 . 𝑒𝐶2 . Then,
by Theorem 3.1, there must exist some reduction of (𝑒𝑃1 , 𝑒𝑃2 , 𝑌 ) that demonstrates that 𝑒𝑃1 . 𝑒𝑃2 .
Since 𝑒𝑃1 . 𝑒𝑃2 , it must be the case that there exists a reduction of 𝑒𝑃2 that does not reach SWHNF
or that reaches an application of a constructor distinct from the constructor being applied in 𝑒𝑃1 .
Soundness then follows from Lemma 11.16, as it does in the U-Coind case.

Ending with LemmaOver Now consider the case where we end a branch with the LemmaOver rule:

LemmaOver

{}, 𝑌𝐿, 𝑒𝐿1 ≡ 𝑒𝐿2
(𝑒1, 𝑌 ) ⊑𝑉 (𝑒𝐿1 , 𝑌𝐿) (𝑒2, 𝑌 ) ⊑𝑉 (𝑒𝐿2 , 𝑌𝐿)

𝑅, 𝑌, 𝑒1 ≡ 𝑒2

...
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(𝑒1, 𝑌1) ⊆𝑉 (𝑒2, 𝑌2) ≜ 𝑒1 ⊆𝐸𝑉 ,𝑌1,𝑌2
𝑒2

𝑠 ⊆𝐸
𝑉 ,𝑌1,𝑌2

𝑒2, ∃𝑒 = lookup(𝑠, 𝑌1) ≜ 𝑒 ⊆𝐸
𝑉 ,𝑌1,𝑌2

𝑒2

𝑒1 ⊆𝐸𝑉 ,𝑌1,𝑌2
𝑠, ∃𝑒 = lookup(𝑠, 𝑌2) ≜ 𝑒1 ⊆𝐸𝑉 ,𝑌1,𝑌2

𝑒

𝑒1 ⊆𝐸𝑉 ,𝑌1,𝑌2
𝑠, 𝑠 ∉ 𝑌2 ≜ 𝑒1 = lookup(𝑠,𝑉 )
𝑥 ⊆𝐸

𝑉 ,𝑌1,𝑌2
𝑥 ≜ True

𝜆𝑥1 . 𝑒1 ⊆𝐸𝑉 ,𝑌1,𝑌2
𝜆𝑥2 . 𝑒2 ≜ 𝑒1 [𝑥/𝑥2] ⊆𝐸𝑉 ,𝑌1,𝑌2

𝑒2 [𝑥/𝑥2] for fresh 𝑥

𝐷 ⊆𝐸
𝑉 ,𝑌1,𝑌2

𝐷 ≜ True

𝑒1 𝑒2 ⊆𝐸𝑉 ,𝑌1,𝑌2
𝑒′1 𝑒
′
2 ≜ 𝑒1 ⊆𝐸𝑉 ,𝑌1,𝑌2

𝑒′1 ∧ 𝑒2 ⊆𝐸𝑉 ,𝑌1,𝑌2
𝑒′2

case 𝑒1 of { ®𝑎1} ⊆𝐸𝑉 ,𝑌1,𝑌2
case 𝑒2 of { ®𝑎2} ≜ 𝑒1 ⊆𝐸𝑉 ,𝑌1,𝑌2

𝑒2∧
∀(𝐷 ®𝑥1 → 𝑒𝑎1 ) ∈ ®𝑎1.∃(𝐷 ®𝑥2 → 𝑒𝑎2 ) ∈ ®𝑎2, ®𝑥 fresh.𝑒𝑎1 [®𝑥/ ®𝑥1] ⊆𝐸𝑉 ,𝑌1,𝑌2

𝑒𝑎2 [®𝑥/®𝑥2]

⊥𝐿 ⊆𝐸
𝑉 ,𝑌1,𝑌2

⊥𝐿 ≜ True

Fig. 19. Equivalent Definition of ⊆

To use LemmaOver, we must prove that 𝑆𝑙1 ≡ 𝑆𝑙2. Then, we can discharge 𝑆1 ≡ 𝑆𝑙2 if there exists
some 𝑉 such that (𝑒1, 𝑌 ) ⊑𝑉 𝑆𝑙1 and (𝑒2, 𝑌 ) ⊑𝑉 𝑆𝑙2.

□

11.7 ⊑ and ⊆
Theorem 6.1. If 𝑆1 ⊆ 𝑆2, then 𝑆1 ⊑ 𝑆2.

Proof. We need to prove that, for any states 𝑆1 = (𝑒1, 𝑌1) and 𝑆2 = (𝑒2, 𝑌2) such that 𝑒1 ⊆𝐸𝑉 ,𝑌1,𝑌2
𝑒2

for some mapping𝑉 , there exists some mapping𝑉 ′ such that (𝑒1, 𝑌1) ⊑𝑉 ′ (𝑒2, 𝑌2). We will show this
by case analysis and induction on the definition of ⊆𝐸

𝑉 ,𝑌1,𝑌2
. In Figure 19, we present the definition

of ⊆ in a format that makes this more clear. This formulation is equivalent to the formulation
in Figure 13 and can be derived from it. For most of the cases of the definition of ⊆𝑉 , there is
an identical case in the definition of ⊑𝑉 , so the implication holds trivially. Only one case in the
definition of ⊆𝑉 does not have an exact analogue, namely the case where 𝑒1 ⊆𝐸𝑉 ,𝑌1,𝑌2

𝑠 and there
exists some 𝑒 such that 𝑒 = lookup(𝑠, 𝑌2). We will break this case into two sub-cases.
Concretized Symbolic Variables on Both Sides Suppose that 𝑒1 is a symbolic variable 𝑠′. Since
𝑠′ ⊆𝐸

𝑉 ,𝑌1,𝑌2
𝑠 , there must be some 𝑒′1 such that 𝑒′1 = lookup(𝑠′, 𝑌1). We assumed that 𝑠 has a

concretization in 𝑌2, so there is no other way that the approximation could hold. (If 𝑠′ were
not concretized, we would be saying that a non-concretized symbolic variable is a more specific
expression than a concretized one.) The ⊆𝐸

𝑉 ,𝑌1,𝑌2
rule for this situation gives us that 𝑒′1 ⊆𝐸𝑉 ,𝑌1,𝑌2

𝑠 .
Note that 𝑒′1 cannot be a symbolic variable itself because it comes from a symbolic store. Assume
now as an inductive hypothesis that we can derive that (𝑒′1, 𝑌1) ⊑𝑉 ′ (𝑠, 𝑌2) for some 𝑉 ′ from the
fact that 𝑒′1 ⊆𝐸𝑉 ,𝑌1,𝑌2

𝑠 .𝑌1 maps 𝑠′ to 𝑒′1, and inlining a concretized symbolic variable is a deterministic
evaluation step, so we can use ⊑-Eval to derive now that (𝑠′, 𝑌1) ⊑𝑉 ′ (𝑠, 𝑌2).
Concretized Symbolic Variable on the Right Now assume that 𝑒1 is not a symbolic variable. In
this sub-case, we know from the definition of ⊆𝐸

𝑉 ,𝑌1,𝑌2
that 𝑒1 ⊆𝐸𝑉 ,𝑌1,𝑌2

𝑒 . The rule ⊑-Sym1 gives us
that (𝑒1, 𝑌1) ⊑𝑉 ′ (𝑠, 𝑌2) if three conditions hold, where 𝑉 ′ is a new mapping, 𝑒′ = lookup(𝑠,𝑉 ′),
and 𝑒′′ is some other expression:
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(1) (𝑒′, 𝑌1) ↩→∗ (𝑒′′, 𝑌1).
(2) (𝑒1, 𝑌1) ⊑𝑉 ′ (𝑒′′, 𝑌2).
(3) (𝑒1, 𝑌1) ⊑𝑉 ′ (𝑒, 𝑌2).
Let 𝑒′ and 𝑒′′ both be equal to 𝑒 . These definitions make condition (1) hold trivially because

𝑒′ = 𝑒′′ and ↩→∗ is reflexive. Before we define 𝑉 ′ and confirm the other two conditions, we will
perform some more case analysis on 𝑒 . Because 𝑒 is drawn from a symbolic store, it must be a data
constructor application or labeled bottom.
If 𝑒 = ⊥𝐿 for some label 𝐿, then we know that 𝑒1 is ⊥𝐿 as well since 𝑒1 ⊆𝐸𝑉 ,𝑌1,𝑌2

𝑒 . 𝑒1 is not a
symbolic variable, so there is no other way for the relation to hold. The rule ⊑-Bt gives us that
(⊥𝐿, 𝑌1) ⊑𝑉 ′ (⊥𝐿, 𝑌2) regardless of the value of𝑉 ′. This gives us conditions (2) and (3) immediately
because 𝑒1, 𝑒′′, and 𝑒 are all equal to ⊥𝐿 in this situation. Let𝑉 ′ be the mapping that only maps 𝑠 to
𝑒′ in order to uphold the requirement that 𝑒′ = lookup(𝑠,𝑉 ′).

If 𝑒 = 𝐷 ®𝑒𝑑 , where ®𝑒𝑑 is a vector of 𝑛 arguments for 𝐷 , then 𝑒1 must be 𝐷 ®𝑒𝑐 for some other
vector ®𝑒𝑐 of the same length 𝑛. Since 𝑒1 ⊆𝐸𝑉 ,𝑌1,𝑌2

𝑒 , it must be the case that 𝑒𝑐𝑖 ⊆𝐸𝑉 ,𝑌1,𝑌2
𝑒𝑑𝑖 for every

𝑖 ∈ {1, ..., 𝑛}. As an inductive hypothesis, we can assume that, for every such 𝑖 , there is a mapping𝑉𝑖
such that (𝑒𝑐𝑖 , 𝑌1) ⊑𝑉𝑖 (𝑒𝑑𝑖 , 𝑌2). For every index 𝑖 , the set of symbolic variables in 𝑒𝑑𝑖 must be disjoint
from the set of symbolic variables in any other argument in ®𝑒𝑑 because 𝐷 ®𝑒𝑑 is a concretization of 𝑠 .
We also know that 𝑠 does not appear in ®𝑒𝑑 because symbolic variable concretizations cannot be
cyclic. This means that we can define𝑉 ′ as

⋃𝑛
𝑖=0𝑉𝑖 , where𝑉0 is the mapping that simply maps 𝑠 to 𝑒′,

without worrying about overlapping mappings. (Assume that 𝑉1, ...,𝑉𝑛 only contain mappings that
are actually used for their respective approximations. We include𝑉0 in the union in order to uphold
the requirement that 𝑒′ = lookup(𝑠,𝑉 ′).) Adding irrelevant symbolic variable mappings does not
interfere with an approximation, so we know that (𝑒𝑐𝑖 , 𝑌1) ⊑𝑉 ′ (𝑒𝑑𝑖 , 𝑌2) for every 𝑖 ∈ {1, ..., 𝑛}. It
follows from ⊑-DC and ⊑-App that (𝐷 ®𝑒𝑐 , 𝑌1) ⊑𝑉 ′ (𝐷 ®𝑒𝑑 , 𝑌2). In other words, (𝑒1, 𝑌1) ⊑𝑉 ′ (𝑒, 𝑌2).
This is precisely what we wanted to confirm for condition (3), and it gives us condition (2) as well
because 𝑒′′ = 𝑒 .

□
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